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Abstract 

 
Shen, Qi, Ph.D., Mechanical Engineering, University of Nevada, Las Vegas, October 2017.   
Theoretical and Experimental Investigation on the Multiple Shape Memory Ionic Polymer-Metal 
Composite Actuator 

 
Major Professor: Kwang J. Kim. 

 

Development of biomimetic actuators has been an essential motivation in the study of 

smart materials. However, few materials are capable of controlling complex twisting and 

bending deformations simultaneously or separately using a dynamic control system. The ionic 

polymer-metal composite (IPMC) is an emerging smart material in actuation and sensing 

applications, such as biomimetic robotics, advanced medical devices and human affinity 

applications. Here, we report a Multiple Shape Memory Ionic Polymer-Metal Composite (MSM-

IPMC) actuator having multiple-shape memory effect, and is able to perform complex motion by 

two external inputs, electrical and thermal. Prior to the development of this type of actuator, this 

capability only could be realized with existing actuator technologies by using multiple actuators 

or another robotic system. Theoretical and experimental investigation on the MSM-IPMC 

actuator were performed.  

To date, the effect of the surface electrode properties change on the actuating of IPMC 

have not been well studied. To address this problem, we theoretically predict and experimentally 

investigate the dynamic electro-mechanical response of the IPMC thin-strip actuator. A model of 

the IPMC actuator is proposed based on the Poisson-Nernst-Planck equations for ion transport 

and charge dynamics in the polymer membrane, while a physical model for the change of surface 

resistance of the electrodes of the IPMC due to deformation is also incorporated. By 
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incorporating these two models, a complete, dynamic, physics-based model for IPMC actuators 

is presented. To verify the model, IPMC samples were prepared and experiments were 

conducted. The results show that the theoretical model can accurately predict the actuating 

performance of IPMC actuators over a range of dynamic conditions. Additionally, the charge 

dynamics inside the polymer during the oscillation of the IPMC are presented. It is also shown 

that the charge at the boundary mainly affects the induced stress of the IPMC. This study is 

beneficial for the comprehensive understanding of the surface electrode effect on the 

performance of IPMC actuators. 

In our study, we introduces a soft MSM-IPMC actuator having multiple degrees-of-

freedom that demonstrates high maneuverability when controlled by two external inputs, 

electrical and thermal. These multiple inputs allow for complex motions that are routine in 

nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the 

our knowledge, this MSM-IPMC actuator is the first solitary actuator capable of multiple-input 

control and the resulting deformability and maneuverability.  

The shape memory properties of MSM-IPMC were theoretically and experimentally 

studied. We presented the multiple shape memory properties of Nafion cylinder. A physics based 

model of the IPMC was proposed. The free energy density theory was utilized to analyze the 

shape properties of the IPMC. To verify the model, IPMC samples with the Nafion as the base 

membrane was prepared and experiments were conducted. Simulation of the model was 

performed and the results were compared with the experimental data. It was successfully 

demonstrated that the theoretical model can well explain the shape memory properties of the 

IPMC. The results showed that the reheat glass transition temperature of the IPMC is lower than 
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the programming temperature. It was also found that the back-relaxation of the IPMC decreases 

as the programming temperature increases. This study may be useful for the better understanding 

of the shape memory effect of IPMC. 

Furthermore, we theoretically modeled and experimentally investigated the multiple 

shape memory effect of MSM-IPMC. We proposed a new physical principle to explain the shape 

memory behavior. A theoretical model of the multiple shape memory effect of MSM-IPMC was 

developed. Based on our previous study on the electro-mechanical actuation effect of IPMC, we 

proposed a comprehensive physics-based model of MSM-IPMC which couples the actuation 

effect and the multiple shape memory effect. It is the first model that includes these two 

actuation effect and multiple shape memory effect. Simulation of the model was performed using 

finite element method. To verify the model, an MSM-IPMC sample was prepared. Experimental 

tests of MSM-IPMC were conducted. By comparing the simulation results and the experimental 

results, both results have a good agreement. The multiple shape memory effect and reversibility 

of three different polymers, namely the Nafion, Aquivion and GEFC with three different ions, 

which are the hydrogen, lithium and sodium, were also quantitatively tested respectively. Based 

on the results, it is shown that all the polymers have good multiple shape memory effect and 

reversibility. The ions have an influence on the broad glass transition range of the polymers. The 

current study is beneficial for the better understanding of the underlying physics of MSM-IPMC. 

A biomimetic underwater robot, that was actuated by the MSM-IPMC, was developed. 

The design of the robot was inspired by the pectoral fish swimming modes, such as stingrays, 

knifefish and cuttefish. The robot was actuated by two soft fins which were consisted of multiple 

IPMC samples. Through actuating the IPMCs separately, traveling wave was generated on the 
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soft fin. Experiments were performed for the test of the robot. The deformation and the blocking 

force of the IPMCs on the fin were measured. A force measurement system in a flow channel 

was implemented. The thrust force of the robot under different frequencies and travelling wave 

numbers were recorded. Multiple shape memory effect was performed on the robot. The robot 

was capable of changing its swimming modes from Gymnotiform to Mobuliform, which has 

high deformability, maneuverability and agility.  
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Chapter 1. Introduction 

The smart material is one of the key foundations supporting the development of new 

biomimetic based technologies. Many actuators and sensors have been developed and applied in 

various fields with the attributions of smart materials [1]–[6]. Ionic polymer-metal composite 

(IPMC) is one of the promising smart materials to be used as underwater actuators applied in 

biomimetic robotics, biomedical devices and micro/nanomanipulation [7]–[9]. The IPMC is 

based on a polymer material Nafion or Flemion. A layer of noble metal such as platinum or gold 

is chemically plated on both sides of the IPMC as electrodes [10]. If an electric field is applied 

across the thickness of the IPMC, the ions redistribute within the polymer, causing the IPMC to 

deform. Meanwhile, a detectable voltage can be generated by the IPMC material if subjected to a 

mechanical deformation as the result of the mobile ions distribution. It has the characteristics of 

inherent softness, resilience, and biocompatibility, which makes the IPMC suitable for a useful 

underwater actuator [11]–[14]. The microfabrication of IPMCs has also been reported, which 

enable scientists and engineers develop micro underwater actuators and sensors based on IPMCs 

[15]. 

Shape memory polymers are materials that can memorize a permanent shape, and then 

later return to their original shape under specific conditions of external thermal, electrical, or 

other stimulation [16], [17]. They have the advantages of high deformation, low cost, low 

density, and potential biocompatibility and biodegradability. Recently, it was found that Nafion, 

which is the intermediate layer of an IPMC, exhibits the multiple shape memory effect [18]. By 

programming a shape of the Nafion in one temperature and fixing the shape at a lower 

temperature, this shape is ‘memorized’ within the temperature range. This process can be 
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repeated multiple times with different shapes. As the result, multiple shapes are programmed in 

the polymer. The programmed shapes are recovered, respectively, in response to subsequent 

heating to each corresponding temperature. These recoveries result from the glass transitions at 

each recovery temperature. However, the underlying physics of this multiple shape memory 

effect is not well studied. 

A new actuator is introduced that takes advantage of both the multiple shape memory 

effect and the electrical actuation effect. This actuator, the multiple-shape-memory ionic-

polymer-metal composite (MSM-IPMC), has multiple degrees of freedom. In this project, we 

have investigated the underlying physics of the multiple shape memory effect, and model the 

MSM-IPMC which couples the multiple shape memory effect and the electrical actuation effect. 

This will enable ones to better understand the mechanism of MSM-IPMC. Furthermore, multiple 

degrees of freedom actuator was developed using MSM-IPMC, which can be applied on 

biomimetic robotic systems. 

1.1. Background and objectives 

1.1.1. The actuation effect of ionic polymer-metal composites (IPMCs) 

The IPMC is an of Electroactive Polymer (EAP), which is promising for biomimetic 

underwater propulsion and sensing [19]–[24]. The IPMC consists of an electrode on both sides 

and a polymer membrane between them. In aqueous environments, under an applied voltage 

across the thickness direction, the ions and water molecules within the polymer transmit towards 

the cathode. As a result, cations and water molecules accumulate on the cathode side. This along 

with the associated electrostatic interactions causes the cathode side to expand while the opposite 

side shrinks. This volume change leads to a bending deformation, which is the electro-
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mechanical actuation effect [25]. The electro-mechanical actuation effect has the capabilities of 

resilience, inherent softness, and biocompatibility. Figure 1.1 shows the energy density (dotted 

diagonal lines) for various smart materials and systems [26]. The energy density of IPMC is 

between 103 J/m3 to 105 J/m3. Compared with other smart materials, the IPMC has a relatively 

high actuation strain and relatively low blocking stress. 

 
Figure 1.1 Energy density for various smart materials and systems. 
 

During electromechanical actuation of an IPMC by a supplied voltage input to its 

electrodes, the main contribution to the deformation is assumed to be the cation migration and 

corresponding swelling effects. The contribution from the concentration gradient and electric 

potential are much larger than the contribution of the pressure gradient. Therefore the pressure 

gradient term was omitted. The Nernst-Planck equation can be expressed as [27] 
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            (1.1) 

where C is cation concentration, μ is cation mobility, D is the diffusion coefficient, F is the 

Faraday’s constant, z is the charge number, and ϕ is the electric potential in the polymer. The 

mobility can be described as μ=D/(RT), where R is the gas constant and T is the absolute 

temperature. The gradient of electric potential in the polymer,  ϕ, is described by Poisson’s 

equation. Poisson’s equation is used in the model as follows 


�� c�����                                  (1.2) 

where ρc is the charge density and ε is the effective absolute dielectric permittivity. Equations 

(1.1) and (1.2) provide the Poisson-Nernst-Planck equations for ionic concentration and electric 

potential within the polymer. The anions of the IPMC are fixed to the polymer backbone. Thus 

the anion concentration only varies based on the deformation. Meanwhile the cations can migrate 

freely within the polymer under the applied electric field. As a result, when the IPMC was 

actuated under the input voltage, the change of anion concentration is relatively small compared 

with the change of cation concentration. It was assumed that the charge density is a function of 

cation concentration as       

)( 0CCFc ���                                                                       (1.3) 

where C0 is the initial ionic concentration. A number of theoretical models of the IPMC have 

been developed [28]–[30]. Nevertheless, the reported models consider the electrode as a bulk 

metal, and its electrical properties do not change during the deformation. 
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1.1.2. Multiple shape memory effect of Nafion 

The ability of shape memory polymers to remember multiple shapes has attracted 

significant attention from scientists and engineers for the application of actuators, sensors and 

smart devices [31].  

The shape memory properties of Nafion has recently been studied [32]. Xie reported that 

annealed dry Nafion can be programmed to memorize four different shapes [18]. Even more 

complex locomotion is possible if a Nafion cylinder is used instead of a rectangular strip, due to 

its two-dimensional cross-section. A given shape is set at one temperature and fixed at a lower 

temperature. This shape may be later recovered by returning to that temperature. With the broad 

glass transition range, the Nafion can be potentially programmed at plenty of unique shapes, 

which can be recovered at different temperatures respectively. Rossiter et al. presented the shape 

memory properties of Nafion-based IPMC [33]. Deformations were induced by external force 

and electrical actuation to program the IPMC. Slow decay was also observed along with the 

shape memory effect. Xiao et. al applied a finite deformation, nonlinear viscoelastic model with 

a discrete spectrum of relaxation times to describe the shape memory behavior of Nafion [34].  

A theory was proposed to explain this behavior [1]. The critical point for this theory is 

that a single broad thermal transition can be regarded as the collective contribution of numerous 

infinitely sharp transitions continuously distributed in the broad temperature range. Each of these 

sharp transitions has its infinitely sharp transition temperature Td. Each infinitely sharp transition 

temperature corresponds to an elemental memory unit (EMU). Based on this theory, at any Td, 

only the EMUs with their Ttranss below this particular Td are activated for the shape memory 

function. For a single broad transition, the distribution of the EMUs is continuous. Thus, any Td 
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within this broad transition would correspond to a particular group of activated EMUs. 

Performing a triple-shape programming at any two deformation temperatures would always 

activate two different groups of EMUs for fixing. More importantly, these two EMU groups can 

be distinctively activated during reheating for two recovery events. Overall, this led to a tunable 

triple-shape memory effect. The same principle could be extended to a multi-shape memory 

effect with more than three modes. 

To date, while some experimental investigations on the shape memory properties of 

Nafion have been done, little work has been done concerning the theoretical investigation of the 

multiple shape memory effect of Nafion.  Poor understanding exists on the physics of the shape 

memory properties of Nafion. A faithful model is desirable to explain the thermo-mechanical 

transaction phenomenon. 

1.2. Rationale, Objectives and Significance of Research Activities 

1.2.1. Rationale 

The MSM-IPMC consists of Nafion and platinum electrodes chemically plated on both 

sides. The actuation effect and shape memory effect are the two key characteristics of MSM-

IPMC. Based on these two effects, which are electro-mechanical actuation effect and thermo-

mechanical multiple shape memory effect, the MSM-IPMC can perform deformation with 

multiple degrees of freedom. Several shapes can be programmed into MSM-IPMC material 

memory at various temperatures, which enables the thermo-mechanical actuation effect. 

Meanwhile, the MSM-IPMC can bend under an applied voltage, which results from the electro-

mechanical effect. 
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I am interested in investigating the fundamental physical principle of the shape memory 

behavior of the MSM-IPMC. Through coupling with our previous study of the actuation effect of 

IPMC, a comprehensive model of MSM-IPMC was developed. Furthermore, I am interested in 

studying the application of MSM-IPMC in soft robotic systems. This type of actuator can 

demonstrate high maneuverability by controlling two external inputs – electrical input and 

thermal input, allowing the complex twisting, bending, and oscillating motions that are 

frequently observed in nature-made systems. 

1.2.2. Objectives 

Development of biomimetic actuators has been an essential motivation in the study of 

smart materials. However, few materials are capable of controlling complex twisting and 

bending deformations simultaneously or separately using a dynamic control system. An example 

of the deformation of a multiple degrees of freedom actuator was shown in Figure 1.2. The 

actuator has a rectangular shape. It can perform a stable bending and twisting deformation. 

Meanwhile, it can also have a high frequency oscillation. 
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Figure 1.2 Illustration of consecutive deformation of multiple degrees of freedom actuator.    
 

Herein, I plan to investigate an IPMC actuator having a multiple shape memory effect. 

MSM-IPMC is able to perform complex motion by two external inputs, electrical and thermal. 

Prior to the development of this type of actuator, this capability only could be realized with 

existing actuator technologies by using multiple actuators or another robotic system. 

In this study, I introduce a soft MSM-IPMC actuator having multiple degrees-of-freedom 

that demonstrates high maneuverability when controlled by two external inputs, electrical and 

thermal. These multiple inputs allow for complex motions that are routine in nature, but that 

would be otherwise difficult to obtain with a single actuator. To the best of our knowledge, this 
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MSM-IPMC actuator is the first solitary actuator capable of multiple-input control and the 

resulting deformability and maneuverability. 

I focus on the theoretical modeling and experimental investigation of MSM-IPMC. The 

underlying physics of the multiple shape memory behavior was explored. Based on our 

preliminary study on the electro-mechanical transaction of MSM-IPMC, I proposed a 

comprehensive model which couple the actuation effect and the multiple shape memory effect of 

MSM-IPMC. Furthermore, the application of MSM-IPMC on the soft biomimetic robotic system 

was studied. 

1.3. The specific technical objectives for this project 

1.3.1. A physical model of the IPMC actuator 

Objective 1 is to develop a physical model of the IPMC actuator. Many physical models 

of IPMC actuator have been developed [28]–[30], [35]. However, some of the models previously 

developed mainly focused on the ionic exchange membrane and did not take the surface 

electrodes into consideration. In some other models, the electrodes were considered as a bulk 

metal. Its electrical properties such as resistance, and capacitance do not change during actuation.   

Based on my previous study, it was found that when the IPMC actuator was deformed, 

the resistance and capacitance changes accordingly [10]. Therefore, a physical model which 

includes the surface electrodes properties change and ions migration within the polymer is 

desirable for the understanding of the physics of the IPMC actuating. 

This current study proposed a physics-based model of the IPMC actuator that combines 

the effect of the electrode resistance change and the charge dynamics of the ionic polymer. The 

model of the surface electrodes microstructure and the model of the polymer membrane were 
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developed separately. Then these two models were coupled together at the boundaries of the 

polymer and the IPMC model was developed. Experiments were performed and the model was 

validated. A finite element method was also used to simulate the model. Figure 1.3 shows the 

research flow of the IPMC physical model. 

 
Figure 1.3 Research flow of the IPMC physical model. 
 

1.3.2. Underlying physics of multiple shape memory effect 

Objective 2 is to explore the underlying physics of multiple shape memory effect. So far, 

limited theoretical work has been attempted to describe the multiple shape memory effect of 

MSM-IPMC. Unique physical principles was proposed to explain the multiple shape memory 

effect of MSM-IPMC.  A theoretical model of the MSM-IPMC, based upon thermal stress 

analysis, was developed. Experiments of the MSM-IPMC was conducted. The simulation results 

and experimental results were compared. This work may shed some light on the underlying 

physics of multiple shape memory effect. 
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Several works have been done on the modeling of the shape memory behavior of Nafion. 

One theory is that by modeling the glass transition, the shape memory process was modeled [34]. 

A temperature-dependent relaxation time or viscosity was assumed in the model. During the 

glass transition, the relaxation time changes significantly. This allows the materials to store a 

temporary shape and recover a permanent shape.  

In our study, I proposed a new physical principle to explain the multiple shape memory 

behavior. The fundamental concept is that the glass transition is independent of each other. 

Based on previous work, the Nafion has multiple shape-memory properties and can be 

programmed into multiple shapes and then programmed by thermal or electric inputs [18]. We 

assumed that the broad glass transition temperature could be regarded as the consecutive 

distribution of a series of glass transitions. Within the range of the broad glass transition 

temperature of inherent, ~55  to ~130 , the Nafion could be programmed with multiple unique 

shapes, and recovered under different temperatures. A theoretical model of the multiple shape 

memory effect of Nafion was developed. It is based on the assumption that the multiple shape 

memory effect is caused by the internal stress and each individual Young’s modulus is 

‘memorized’ during the previous programming process. As the MSM-IPMC was reheated to 

each temperature Ti, the internal stress σi was released on the MSM-IPMC, and nonequalibrium 

Young’s modulus Eneq
i was recovered, which results in the shape recovery of the MSM-IPMC. 

Figure 1.4 shows the illustration of the multiple shape memory process induced by the internal 

stress and Young’s modulus. 
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Figure 1.4 Physical principle of the multiple shape memory behavior. 
 

 
1.3.3. A multiphysics model of MSM-IPMC 

Objective 3 is to develop a multiphysics model of MSM-IPMC. Based on the actuation 

model of IPMC developed in Objective 2 and the multiple shape memory model obtained in 

Objective 1, a comprehensive multiphysics model of MSM-IPMC which couples the 

aforementioned two effects was developed. This will be the first model that includes this two 

actuation effect and multiple shape memory effect, simultaneously. Simulation of the model was 

performed for an appropriate range of temperature. The MSM-IPMC sample was also 

experimentally tested to verify the model. This work is beneficial for the understanding of the 

physics underneath this two effect working together on a single actuator. 

The MSM-IPMC actuator can demonstrate complex 3D deformation. The MSM-IPMC 

has two characteristics, which are the electromechanical actuation effect and the shape memory 

effect. The bending, twisting, and oscillating motions of the actuator could be controlled 

simultaneously or separately by means of thermal-mechanical and electro-mechanical 

transactions. These two separate transactions are significant properties of the presented actuator.  
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Numerous works on the electromechanical actuation effect of MSM-IPMC have been 

studied previously. Under an applied electrical field, the migration of ions along with the water 

molecule, and the electrostatic force lead to the deformation of the actuator, which is the main 

actuation effect. The physical principle of multiple shape memory behavior has not been well 

studied. According to the previous study [1], the destabilization of electrostatic interactions 

between ions and the crystalline segments which are used as physical crosslinks to hold the 

temporary shape is the main contribution to the multiple shape memory behavior. Figure 1.5 

shows the molecular mechanism of shape memory effect [36]. The black dots represents the 

netpoints. The blue lines represents the molecular chains of low mobility below the glass 

transition temperature. The red lines represents the molecular chains of high mobility above the 

glass transition temperature. 

 
Figure 1.5 Molecular mechanism of shape memory effect. 
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Based on the results of Objective 1, we proposed a comprehensive model which couple 

the actuation effect and the multiple shape memory effect for MSM-IPMC. It is the first model 

that includes this two actuation effect and multiple shape memory effect. Simulation of the 

model was performed and experiments were conducted to verify the model. Furthermore, the 

shape recovery and reversibility of MSM-IPMCs with different membranes and ions were tested 

and the results were compared. Figure 1.6 shows the research flow of the MSM-IPMC 

multiphysics model. 

By programming the actuator, complex shape change of the actuator could be achieved 

with thermal control, and the thermo-mechanical actuation could be used for overall structural 

deformation. Meanwhile, the MSM-IPMC could perform an oscillation motion by applying a 

voltage to the electrodes. The actuation amplitude and frequency of the oscillation could be 

adjusted by changing the amplitude and frequency of input voltage. Thus, the electro-mechanical 

actuation of the MSM-IPMC could be utilized for locomotion.  
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Figure 1.6 Research flow of the MSM-IPMC multiphysics model. 
 

 
1.3.4. A robotic system based on the MSM-IPMC actuator 

Objective 4 is to demonstrate a robotic system that is based on the multiple degrees of 

freedom MSM-IPMC actuator. Through the electro-mechanical actuation effect, the actuator is 

able to perform (high-frequency) bending motions under external electrical input. With the 

thermo-mechanical multiple shape memory effect, the actuator can obtain stable, complex (low-

frequency) motion under external thermal inputs. Compared with the electro-mechanical 

actuation effect, the thermo-mechanical multiple shape memory effect occurs over a much longer 

timescale. The ability to control MSM-IPMC actuators by two external inputs, electrical and 

thermal, enables these devices to be used to perform highly complex motions, twisting, bending 

and oscillating simultaneously or separately. The twisting and bending motions are induced 

thermally and the oscillating motion is induced electrically. The bending motion and oscillating 
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motion take place with the same rotation axis; previously, this could be realized only with 

existing actuator technologies by using multiple actuators or another complicated robotic system. 

Moreover, to the best of my knowledge, the MSM-IPMC actuator presented in this paper is the 

first solitary actuator capable of multiple-input control and the resulting deformability and 

maneuverability. This work with the capacitance of MSM-IPMC brings inspiration to researchers 

and engineers to designing new soft robotic systems. 

The MSM-IPMC could be controlled separately by means of thermal and electrical 

inputs. It has the advantages of resilience and inherent softness; moreover, the electrical 

characteristics of the MSM-IPMC change as the temperature change. Potentially, it could be 

applied to medical devices and biomimetic robotics. 

We developed a multiple degrees of freedom MSM-IPMC actuator and apply it in 

biomimetic robotic systems. One potential application of MSM-IPMC is in underwater 

biomimetics, which has been studied for many years. Fish (or whale or dolphin) fins undergo 

considerable deformation, which enables the fish to generate propulsive forces and control body 

position. Robotic flapping foil devices were developed in order to understand the significance of 

flexible propulsive surfaces for locomotor performance [37].  A biomimetic fin was developed 

based on the monolithic fabrication of IPMC actuators [15]. Complex deformation modes can be 

produced. However, most of the devices contain complicated systems. MSM-IPMC can be used 

as a single actuator that performs similar deformations as does a fish fin. By programming 

MSM-IPMC to different desired shapes, and by controlling the thermal and electrical inputs, 

multiple degrees of freedom deformation of the actuator can be performed.  
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1.4. Broader Impact 

The research results of our study will have a significant impact not only in the areas of 

material physics and soft actuator which can potentially apply in the field of soft robotics, but 

also in the related educational activities. The MSM-IPMC, which is developed in my work, will 

be useful in soft biomimetic robotic systems and bio-medical systems. Meanwhile, the MSM-

IPMC provide a reliable, easily scalable and omnidirectional solution to the field of soft 

actuators, which has a substantial market potentially. 

Meanwhile, the project also provided an excellent opportunity for myself. Through the 

training in the Active Materials and Smart Living Laboratory, I was able to learn cutting-edge 

research technologies and the training also helped me to maintain the global leadership in science 

and engineering in connection with IPMC. 
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Chapter 2. A Physics-Based Model Encompassing Variable Surface Resistance and 

Underlying Physics of Ionic Polymer-Metal Composite Actuators 

In this chapter, a research paper published in Journal of Applied Physics is included.  The 

authors are Qi Shen, Viljar Palmre, Tyler Stalbaum, and Kwang J. Kim in order of appearance on 

the article. This article provides a coupled model encompassing change in electrode material 

properties during deformation and the associated influence on actuation performance. This 

chapter was reprinted from Journal of Applied Physics, Shen, Q., Palmre, V., Stalbaum, T., and 

Kim, K. J., “A comprehensive physics-based model encompassing variable surface resistance 

and underlying physics of ionic polymer-metal composite actuators,”118(12), 124904, (2015), 

with the permission of AIP Publishing.   

KJK conceived the idea and designed the project. The primary contributions to the 

mathematical modeling of the electrodes and analytical physics based modeling are from QS.  

The primary contributions to the finite element modeling are from TS and QS.  The experimental 

work was conducted by QS and VP. The data analysis, simulations, conclusions, and discussion 

were a combined effort from the whole research team. 

2.1. Introduction 

Smart materials are the foundation supporting the development of new biomimetic based 

technologies. Many actuators and sensors have been developed and applied in various fields with 

the attributions of smart materials [38]–[45]. Ionic polymer-metal composite (IPMC) is one of 

the promising smart materials to be used as underwater actuators applied in biomimetic robotics, 

biomedical devices and micro/nanomanipulation [46]. The IPMC is based on a polymer material 

Nafion or Flemion [47], [48]. A layer of noble metal such as platinum or gold are chemically 
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plated on both sides of the IPMC as electrodes. If an electric field is applied across the thickness 

of the IPMC, the ions inside the polymer will begin to redistribute, causing the IPMC to deform. 

Meanwhile, a detectable voltage can be generated by the IPMC material if subjected to a 

mechanical deformation as a result of the mobile ions distribution. It has the characteristics of 

inherent softness, resilience and biocompatibility, which makes the IPMC suitable for the 

underwater actuator [11], [13], [21], [49]. The microfabrication of IPMCs has also been reported, 

which enable scientists and engineers develop micro underwater actuators and sensors based on 

IPMCs [50]–[53]. 

Several works concerning the modeling of IPMC have been reported [28], [29]. Kanno et 

al. modeled the electrical characteristics of the IPMC actuator [54]. De Gennes et al. describes 

the effect of an applied electric field on the spontaneous curvature and an imposed curvature on 

the electric field [55]. Shahinpoor and Kim investigated the influence of the electrode 

conductivity on the transduction behavior of IPMC [56]. Nemat-Nasser and Li proposed a model 

that describes electromechanical transduction in relation to the electrostatic interaction within the 

polymer [27]. Farinholt derived the impedance response for a cantilevered IPMC beam under 

step and harmonic voltage excitations [57]. The underlying cause of the actuation is explained by 

the internal stress induced by the interaction between the ion pairs inside a cluster. Newbury and 

Leo developed a model which is based on an equivalent circuit representation that is related to 

the mechanical, electrical, and electromechanical properties of the material [58]. Bonomo et al. 

developed a nonlinear dynamic model of IPMC actuator that results from the cascade of both the 

electrical and the electromechanical stages [59]. Brunetto et al. introduced a model that describes 

the interaction between the beam and the water [60]. However, the models presented above only 
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consider the charge dynamics inside the polymer membrane and do not consider the surface 

electrode. Chen and Tan investigated the electrical dynamics of the IPMC based on Nemat-

Nasser’s work [61]. They expanded the model and added the effect of surface resistance. Porfiri 

showed that the electrodes do significantly affect the charge dynamics and hence the actuation 

performance of IPMC [62]. Pugal et al. developed a physics based model that couples the 

currents in the polymer to the electric current in the continuous electrodes of IPMC [63]. 

Nevertheless, the above models consider the electrode as a bulk metal, and its electrical 

properties do not change during the deformation.  

An electrode model for IPMCs was proposed by Kim et al. [64]. In this work it was 

shown that the properties of electrode such as the resistance and capacitance do change during 

the deformation. Our previous work showed that when the IPMC is subjected to a mechanical 

deformation, the change of surface electrode properties have effect on the sensing of IPMC. The 

underlying physics of the electrode properties change during the deformation is that the 

coagulation of the platinum atoms is generated through the electroless plating process [25], [48]. 

The incipient particles, with diameters less than 10 nm, coagulate during the reduction process 

and eventually grow to 50-100 nm. As the IPMC oscillates, the surface electrode are compressed 

and stretched periodically, and since the size of the particle do not change, the voids between the 

particles vary accordingly. Thus, it can be predicted that the surface electrode resistance varies 

when the IPMC is actuated and have effects on the actuating performance. However, to date, few 

works consider the effect of the surface resistance change on the actuating performance of the 

IPMC. 
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In current paper, to address the above problem, a physics-based model that combines the 

effect of the electrode resistance change and the charge dynamics of the ionic polymer was 

proposed. Firstly, a microstructure model of the surface electrode was proposed. The 

arrangement of particles used in this model was inspired by the primary metallic crystal 

structures. Based on the volume change of the electrode caused by the IPMC beam bending, the 

variation of the resistance of the IPMC was obtained. Secondly, a physics based model of the 

polymer membrane was developed. The model is based on the Poisson-Nernst-Planck equations. 

The Ramo-Shockley theorem was used to calculate the current in the continuous electrodes of 

the IPMC [65], [66]. The finite element approach is used to describe the dynamics of the 

segmented IPMC strip, which considers as composition of finite elements that can be used to 

represent a mechanical deflection of the IPMC. By combining the model of the surface electrode 

and the polymer membrane, the actuation model of the IPMC was obtained. To the best 

knowledge of the authors, the proposed actuation model is the most complete physics-based 

IPMC model presented to date including the effect of surface electrode. 

Experiments were also conducted to validate the model. The IPMC samples were 

prepared. The scanning electron microscope (SEM) was used to study the microstructure of the 

IPMC. Experimental apparatuses were implemented to measure the surface resistance and the 

deformation of the IPMC strip. The parameters of the model were identified based on the 

experimental results. The simulation results were compared with the experimental results to 

verify the model. The model of the IPMC was simulated using the finite element 

implementation. The charge dynamics inside the polymer was presented and discussed. 
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The rest of this paper is organized as follows. The physical model is presented in Section 

II. Experimental validation and results are shown in Section III and IV, respectively. A 

discussion with the finite element implementation of the IPMC model is presented in Section V. 

Section VI is the conclusion. 

2.2. Mathematical model 

2.2.1. The electrode model 

The model of the electrode resistance is developed in this section. It is assumed that the 

IPMC satisfies the following restrictions: 1) compared with the IPMC’s length, the oscillation of 

the IPMC is far small. The IPMC is assumed to bend vertically at the tip denoted by w(L, t); 2) 

During the oscillation of the electrode, the relative position of the metal particles changes 

accordingly as well as the size of the unit cell ; 3) The electrode of the IPMC is composed of the 

metal particles and the voids between the particles; The microstructure of the electrodes can be 

described in terms of its unit cell; 4) The metal particle arrangement-microstructure is based on 

the Face Center Cubic (FCC) [67]–[71]; 5) It is assumed that the particle on each side of the 

defective unit cell is missing [10]. By integrating the unit cell in the three dimensions along with 

the defective cell, the impedance of the electrode can be obtained. The vacancy defect was also 

included in the model. The length and width of the IPMC beam is L and W. The thickness of the 

polymer membrane and electrode are 2h and he. The unit length of the curved IPMC midline is 

assumed as dz. The unit cell length of the stretched electrode can be expressed as [10] 

� �� � � �� � � �� �� �hhtLwrtLwdtLwhdL ˆ,,,,ˆ 		� �                                                   (2.1)  

where γ(t)  is the angle of the curved beam, r(w(L,t))  is the radius of the midline and ĥ  is the 

position of the unit cell along the thickness direction of the electrode. The expressions of  γ(t) 
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and r(w(L,t)) are defined in Ref. [10]. Two kinds of cubes are considered: the normal cube and 

the cube with a vacancy defect. The resistance of the normal cube and defective cube can be 

expressed as 
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where p�  and v�  are the resistivity of the particle and void, a and vs  are the side length of the 

unit cell and void cube, which were defined in Ref. [10]. In the current study, the IPMC is 

hydrated and the void is water. Then we integrate the resistance of the cube (see Eqs. (2.2) and 

(2.3)) in the z, y, x direction to obtain the resistance of the electrode. One can obtain the 

expression of the electrode resistance as follows 
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where xP , yP , zP  are the percentages of the defective cube in the x, y, z direction. The percent of 

the vacancy can be expressed as 

� �� �� �� �zyxv PPPP ����� 1111
2
1  .                                                                    (2.5) 

 

2.2.2. The polymer membrane model 

Analytical solutions are available for several special cases of geometric nonlinearity in a 

cantilever beam [72]. Herein, the finite element approach is used to describe the dynamics of the 

IPMC strip. The IPMC actuator was assumed to be divided by a series of elements, where the 

voltage on each element is constant, as shown in Fig. 2.1. The IPMC was assumed in the fully 

hydrated condition. The Nernst-Planck equation, which describes the cation migration and 

diffusion in the polymer element backbone, and the Poisson’s equation, which describes the 

concentrating of local charges at the boundary between the polymer and surface electrodes 

resulting in an electric field increase in the opposite direction, are expressed as [27], [73] 

� � 0ˆ �������	



 ��FCzCD

t
C

                                                      (2.6) 


�� cE ������ 2�

                                                                        (2.7) 

)( 0CCFc ���                                                                      (2.8) 

where C, t, μ, D, F, ẑ  , ϕ,  ̂ , E
�

, ρc and C0 are the cation concentration, time, mobility of 

cations, diffusion constant, Faraday constant, charge number, electric potential in the polymer 

element, absolute dielectric constant, strength of the electric field, charge density and constant 

anion concentration respectively. To solve for the actuation of IPMC, Eqs (2.1), (2.2) and (2.3) 
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were transformed to the Laplace form. The following variables were also converted to the 

frequency domain. Nemat-Nasser and Li presented a theory that the charge density at the 

boundary of polymer is proportional to the induced stress σ and is expressed as [27] 

 
Figure 2.1 Schematic of IPMC beam. 

 

� � ),,(,, szhszh c ��� ���  .                                                                        (2.9) 

The boundary condition of Eq. (2.9) is � � 0),,(,, ��	 szhszh �� . By combining Eqs. (2.6), (2.7), 

(2.8) and (2.9), the expression of ionic flux in the x direction within the polymer can be obtained 

as [74] 

� � � � � �� � � �� �� � � �
� ����
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�
�	��

sART
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and R is the gas constant, and T is the absolute temperature. Based on Ramo-Shockley theorem 

[75], which describes a relationship between the instantaneous induced current on an electrode 

and the charge motion in the vicinity, the local current density at an electrode boundary is 

expressed as 

� � � ����
2/

2/
,,1,

h

h
dxszxf

h
szj  .                                                                   (2.11) 

The electric potential on the surface of the IPMC element can be expressed as 

� � � � � � � �� �����
z

eee L
zdsLwRhWszjsVszh

0

~
,,~

2
,, ��                                                       (2.12) 

where � �sV  is the voltage applied to the clamp. Through combing (2.11) and (2.12), the 

),,( szx�  can be obtained as 

� � � �� � � �sVxsAszGszx sinh,),,( ���                                                          (2.13) 

with 
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The detailed derivation can be seen in Appendix A. By relating the induced stress ),,( szh��  to 

the bending moment, one can obtain 

� �
I

szhMszh ,),,( �
���                                                                        (2.14) 

where I is the moment of inertia of the IPMC element and 3

3
2WhI � . With Eqs. (2.9), (2.13) and 

(2.14), the bending moment can be obtained as 

� � � �� � � �sVhsAszG
h
IszM sinh,),( �

��  .                                                         (2.15) 

Through relating the moment to the displacement of the IPMC elements and integrating the 

displacements, one can obtain 

� �� �� � � �� �� �
� �� � � � � �� � � � � �� ����
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hY
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,,
11sinh

,,
2,,,,exp),( �        (2.16) 

where Y is the Young’s modulus. See Appendix B for the detailed derivation of ),( sLw . By 

solving Eq. (2.16), the deformation of the IPMC ),( sLw  under the voltage )(sV  can be 

obtained. The equation was converted to the time domain. Since Eq. (2.16) have no analytical 

solution, the Matlab was used to obtain the numerical solution for ),( sLw . In current study, the 

actuation bandwidth of an IPMC actuator is relatively low (under 10 Hz) [61]. To accommodate 
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the vibration dynamics of the beam, we project ),( sLw  on the first mode of vibration expressed 

as 

� �zzsh
LLsh
LLchzzchzX 11

11

11
111 sin

sin
coscos)(   

  
    �

	
	

���                                      (2.17) 

where 1  is the constant in relative with the natural frequency and the damping ratio [76]. The 

actual tip displacement of the IPMC beam can be expressed as 

� � � �LXtLwzwl 1,)( �  .                                                                    (2.18) 

 

2.3. Experimental method 

2.3.1. Sample preparation 

IPMC samples were prepared for the experimental validation. Firstly, the NafionTM-117 

membrane was pretreated. The surface of the membrane was polished. The membrane was 

immersed in 3% hydrogen peroxide (H2O2) to eliminate organic impurities and in 1 M sulphuric 

acid (H2SO4) to remove the metallic impurities. The deionized (D.I) water was used to clean the 

membrane. Secondly, the platinum metal particles were plated on the polymer membrane. The 

membrane was immersed in a platinum complex solution (Pt(NH3)4Cl2·H2O) for the primary 

plating process. This procedure impregnates the membrane with Pt salt. After the Pt 

impregnation, a sodium borohydride solution (NaBH4) was prepared and the Pt impregnated 

sheet was placed in the solution. This is a reduction reaction to reduce the Pt salt from the 

membrane to the surface of the polymer. After reduction process, the membrane was cleaned in 

multiple baths of D.I water and a sulphuric acid solution. Secondary plating was conducted to 

lower the surface resistance of the membrane. The membrane were suspended in the solution 
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while hydrazine (NH2NH2·H2O) and hydroxylamine hydrochloride (H2NOH·HCl) were added to 

the solution. Finally, the membrane was cleaned in multiple baths of D.I water and a sulphuric 

acid solution. After the plating process, the hydrogen ion is present in the membrane. In order for 

a better transport of ions through the membrane, an ion exchange was conducted. To improve the 

ion transportation through the membrane, the hydrogen ions were replaced with lithium ions. 

This exchange was completed by soaking the membrane in a solution of lithium chloride. After 

the exchange has completed, the sample was rinsed and stored in D.I water. 

2.3.2. Surface resistance  

The SEM was used to study the structure of the IPMC sample. Figure 2.2 shows the 

cross-sectional image of the IPMC, which indicates the platinum content distribution in the 

electrode and vicinity. Based on the image, the IPMC was composed of the electrode and the 

polymer membrane. In the surface resistance model above, the electrodes are considered a bulk 

metal. However, in reality from the SEM images it can be seen that the structure is more 

complicated. The thickness of the electrode could vary significantly. The thin electrolessly plated 

electrodes on a polymer do not result in a uniform conductivity in each direction at each location, 

so the defective factor helps to take those effects into account. The parameters of the electrode 

were measured based on the SEM images. 
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Figure 2.2 Cross-section SEM images of the IPMC. 

   

Figure 2.3 shows the illustration of the experimental apparatus for the surface resistance 

test. In accordance with the model, during the experiments, the IPMC sample was submerged in 

the D.I water to achieve a fully hydrated condition. The IPMC was clamped at one end. An 

electromagnetic shaker (VR-5200, Vibration Research Corp.) was used to provide a linear, 

oscillatory motion at the free end of the IPMC. A PC was utilized to send the orders to the 

vibration controller (VR-8500, Vibration Research Corp.). By using an amplifier to amplify the 

signal from the controller, the sinusoid oscillating frequency and amplitude of the 

electromagnetic shake were controlled. In current study, the frequency varies from 1 to 5 Hz and 

the amplitude varies from 5 to 10 mm. Figure 2.4 shows the snapshot of the experimental set up. 

Pt layer

Ionic polymer
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Figure 2.3 Illustration of the experimental set up for the surface resistance test. 
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(a) 

 
(b) 

Figure 2.4 Snapshot of the experimental set up: (a) general set up; (b) close-up of the IPMC 
surface resistance measurement. 

 

 Cha et. al presented an experimental method to test the impedance of IPMC [77]. The 

IPMC was clamped at one end and the other end was subjected to a periodical stimulus along the 

length direction. In current study, the curvature of the IPMC surface electrode is assumed to be 



www.manaraa.com

33 
 

 

circular arc. To obtain a curved IPMC with a radius for the resistance measurement, a clamp was 

set at the middle of the IPMC, which is 20 mm from the clamp at the end. A circuit which 

connects the two points of the surface electrode at one side of the IPMC was designed. It consists 

of a stabilized voltage supply of 0.1 V and a 0.5 Ω resistor in series. The surface resistance of the 

IPMC was measured under the mechanical stimulus. An amplifier was used to amplify the output 

signal. A laser sensor (optoNCDT-1401, Micro-Epsilon) was used to measure the displacement 

of the measured point of the IPMC. A DAQ was used to measure the signals (NI USB-6008, 

National Instruments). A LabVIEW data acquisition system was used to record the experimental 

results.  

2.3.3. Actuation performance 

Experiments were conducted to test the actuation performance of IPMC. Figure 2.5 

shows the schematic illustration of the experimental set up. The IPMC was submerged in D.I 

water and clamped at one end in vertical cantilever position. A signal generator (FG-7002C, EZ 

digital) was used to provide the sinusoid actuation signals to the IPMC actuator at the clamp 

through a power amplifier (LVC-608, AE Techron). The frequencies of the signal vary from 0.2 

Hz to 10 Hz, and the amplitudes vary from 2 V to 4 V. The oscillation of the IPMC strip was 

measured by a laser displacement sensor (optoNCDT-1401, Micro-Epsilon). A DAQ (NI SCB-

68, National Instruments) was used to measure the signals. The current, voltage and 

displacement responses were recorded simultaneously using LabView 8 software. Figure 2.6 

shows the snapshot of the experimental set up. 
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Figure 2.5 Illustration of the experimental set up for the actuation test. 
 

2.4. Simulations and experimental results 

2.4.1. Resistance model verification 

An IPMC sample with the size of 51.07 mm in length, 9.94 mm in width, and 0.57 mm in 

thickness was used for the resistance model verification. To obtain the resistance Re of the 

electrode, a DC voltage of 0.1 V, which was provided by a power supply, was applied to the 

circuit. This voltage value is represented by Vp in the mathematical model. The LabVIEW was 

used to measure the voltage of the resistor. The voltage value across the resistor is represented in 

the model by Vr. The resistance of the resistor is given by Rr in the model. The voltage and 

current of the electrode can be obtained as the electrode is in series with the resistor. These 
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values are designated as Ve and Ie for voltage and current, respectively. According to Ohm’s law, 

the resistance Re of the electrode can be expressed as 

 

 
(a) 

 
(b) 

Figure 2.6 Snapshot of the experimental set up; (a) general set up; (b) close-up of the IPMC 
actuation measurement. 
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The recorded experimental data was analysed in a computer using MATLAB. To validate the 

model, the parameters need to be identified. The physical constants are shown in Table 2.1. The 

diameter of the metal particle is Dp = 50×10-9 m (50 nm) [64]. Based on the SEM image, the 

average thickness of the electrode is measured as he = 6×10-6 m (6 μm). The percentage of the 

vacancy need to be identified through curve-fitting using the least-square method. Based on the 

least-square error analysis of the experimental results, the percentage of the vacancy Pv of the 

resistance model were identified as Pv = 15.6%, this result is close to that in our previous work 

[10]. Figure 2.7 shows the comparison between simulation results and experimental results of the 

electrode resistance. It is noticed that under the sinusoidal mechanical stimulus, the resistance of 

the electrode shows a sinusoidal variation. It is also found that the simulation results match well 

with the experimental results. One of the explanations to this is that some of the parameters of 

the model were identified based on the experimental results, such as percentage of the vacancy 

Pv, Shahinpoor presented the radius of the curvature ρr of the IPMC beam as [78] 

!
!�

2

22 	
"

L
r                                                                               (2.20) 

where δ is the end deflection. The radius of the curvature ρr is in turn related to the maximum 

tensile (positive) or compressive (negative) strains, which can be expressed as 

r

h
�

 " .                                                                                    (2.21) 

In current study, the deformation of the IPMC is converted to the strain for intuitive comparison. 

Figure 2.8 shows the resistance change of the IPMC electrode versus different strains. The 
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simulation results were compared with the experimental results. It can be seen that the model can 

well describe the resistance change of the IPMC electrode. It is also noticed that with the strain 

increasing, the resistance change of the electrode increased. 

Table 2.1 Value of the resistance model constant. 
 

Item Value 

ρp (Ω m) 1.06×10-6 

ρv (Ω m) 1×103 

 

 
Figure 2.7 Comparison between the simulation results and experimental results of the 
electrode resistance at the oscillation amplitude of 10 mm and frequency of 2 Hz. 
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Figure 2.8 Comparison between the simulation results and experimental results of the 
electrode resistance change. 
 

2.4.2. Actuation model verification 

The IPMCs as the actuators were tested to verify the actuation model. Three samples with 

different length were tested. For the comparison of the strain, the widths of the samples were the 

same. Table 2.2 shows the dimensions of the IPMC samples. The definition of L1,  L, W and 2h 

can be found in Figure 2.1. Some parameters of the actuation model were based on previous 

results of the surface resistance. Some are physical constants. Table 2.3 shows the value of the 

IPMC actuator model constants [63]. The absolute temperature is T = 297 K. The rest need to be 

identified. In current study, the voltage amplitude applied on the IPMC was constant. By 

applying varies frequencies to the IPMC, varies deformation as well as strains can be obtained. 

The deformations of the IPMC actuators were measured. Based on the experimental results of 

IPMC 1 through the least-square method in MATLAB, the parameters of the model were 
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identified as Y = 90.92×106 Pa and α = 104 J/C. The Young’s module of IPMC varies from 

41×106 Pa to 571×106 Pa based on previous work [61], [63]. The coupling constant α, which 

relates the charge density at the boundary of polymer membrane to the induced stress, varies 

from 30 J/C to 148 J/C based on previous work [27]. Thus the values in current paper are 

reasonable. The parameters were plugged into the actuation model (except geometric 

dimensions) for predicting the actuating performance of IPMC 2 and IPMC 3. Model with and 

without surface resistance change were compared. For the model without consideration of the 

surface resistance change, the surface resistance R in Eq. (2.23) is a constant value and was 

identified as R = 1.8 Ω through the non-linear fitting process. The surface resistance per {unit 

length · unit width} of the IPMC is 7.44 Ω/m2. Previous work reported the surface resistance per 

{unit length · unit width} as 22.3 Ω/m2 [61]. The reasons for the difference are the different 

electrode plating times and different reduction temperatures during the fabrication process of 

IPMC. The rest parameters are the same as previous simulations. 

The actuation model was verified in experiments by applying sinusoidal actuation signals 

to the IPMC samples and measuring the deformations. Figure 2.9 shows the comparison of 

experimental results with theoretical model simulation results with and without consideration of 

surface resistance change. It is clear that the model considering the effect of surface resistance 

change shows better agreement than the one ignoring the resistance. This indicates that the 

model incorporating the surface resistance change is more effective in capturing the actuation 

dynamics of IPMC. Based on Fig. 2.9, it can be found that for all samples, good agreement 

between the model prediction and the experimental data is achieved. These figures show that 

current actuation model can well predict the actuating of IPMCs. It is also noticed that with the 
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voltage amplitude increasing, the strain of the IPMC increased. As the actuating frequency rose, 

the strain of the IPMC reduced. It was found that in general when the frequency is approached 6 

Hz, the strain of the IPMC increased. This might be caused by the natural frequency of the IPMC 

beam. Meanwhile, this tendency was not clear for the IPMC beam with the length of 26 mm. 

One possible explanation is that the experimental test and theoretical simulation of the IPMC 

model with the consideration of the surface resistance change were discrete, which only tested at 

several frequencies. The tendency could be more clear if the IPMC sample was tested at more 

frequencies. 

 

 

Table 2.2 Dimensions of the IPMC samples. 
 

Item L1(mm) L (mm) W (mm) 2h (mm) 

IPMC 1 51.07 41.07 9.94 0.57 

IPMC 2 37.05 27.05 9.94 0.57 

IPMC 3 22.16 12.16 9.94 0.57 
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Table 2.3 Value of IPMC actuator model constants [63]. 
 

Item Value 

D (m2/s) 7×10-10 

C0 (mol/m3) 1091 

̂  (F/m) 0.2×10-3 

μ (mol·s/kg) 2.9×10-15 

z 1 

F (C/mol) 96487 

R (J/mol·K) 8.3143 
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Figure 2.9 Comparison of experimental results of IPMC strain with model predictions, 
with and without consideration of surface resistance change.  
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2.5. Discussions 

2.5.1. Mathematical model 

A physics-based model was used to simulate ion concentration, polymer electric 

potential, charge density and displacement response to a low voltage input signal to obtain 

further insight into the underlying physics. A 2-dimensional finite element simulation was 

performed using COMSOL Multiphysics 4.3b software. Two mesh types were used in 

simulation: (1) a sparsely mapped mesh along the length with a very large element aspect ratio; 

(2) a triangular mesh with fine distribution near electrodes and maximum aspect ratio of 1.3:1, as 

shown in Fig. 2.10. The sparsely mapped mesh was utilized because the changes in the length 

direction were assumed to be negligible. The sparsely mapped mesh has 55,044 elements, 

whereas the triangulated mesh has 145,952 elements. Both meshes were refined to within 1% 

solution change. Additionally, the sparse mesh produced the same solutions as the triangulated 

mesh and was thus chosen for use in simulations.  

The simulation utilizes the transport of diluted species, general form partial differential 

equation (PDE), electric currents, and solid mechanics physics modules in COMSOL to achieve 

the desired governing set of PDEs. The transport of diluted species and general form PDE 

physics provide the Poisson-Nernst-Planck (PNP) set of coupled PDEs, which are used to 

describe cation concentration and electric potential within the polymer. A linear elastic material 

model with infinitesimal strain theory was implemented for the solid mechanics physics. The 

simulation is divided into two studies: first the electric currents and PNP physics are applied 

simultaneously to find ion concentration and charge density in the IPMC for a given sinusoidal 

voltage input, and then the solid mechanics study is performed. The voltage is applied over a 



www.manaraa.com

44 
 

 

fixed region of 10 mm in length to the electrodes, similar to the experimental setup. The solids 

model is done with one end of the IPMC fixed. A body load which is assumed proportional to 

the charge density is applied across the free length of the IPMC strip.   

During electromechanical actuation of an IPMC by supplied voltage input to its 

electrodes, the main contribution to the deformation is assumed to be the cation migration and 

corresponding swelling effects. In current model, the IPMC is in fully hydrated condition. The 

contribution from the concentration gradient and electric potential are much larger than the 

contribution of the pressure gradient, thus this term has been omitted and the Nernst-Planck 

equation is expressed in Eq. (2.6). Poisson’s equation as used in the model is expressed in Eq. 

(2.7). The anions of the IPMC are fixed to the polymer backbone making the anion concentration 

variable with deformation only, while the cations are free to migrate based on the electric 

potential. Thus in actuation of the IPMC by input voltage, the change of anion concentration is 

very small in comparison with the change in cation concentration and the charge density is 

assumed to be a function of cation concentration only as expressed in Eq. (2.8). A body force in 

the bending direction, which is assumed to be proportional to the charge density as Fy = αρc, is 

the input into the solid mechanics model. The solids mechanics describe the stress, strain, and 

local displacement. The governing solid mechanics equation used is 
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(a) 

 

(b) 
Figure 2.10 Meshes used in finite element simulations: (a) mesh sparsely mapped along 
length; (b) triangulated mesh. 
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where ρm is material density and ρm = 874 kg/m3, u = {u, v} is the local displacement vector in x 

and y directions respectively, and F is the body force vector. Notation σm is the material stress 

tensor written in terms of local displacement using Hooke’s Law as 
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where ν is the Poisson’s ratio and ν = 0.49 [63]. As the material is assumed to deform primarily 

in the bending plane, a plane strain deformation assumption was utilized, hence strains in the x-z, 

y-z, and z-z planes are assumed to be zero. The model first utilizes Eqs. (2.6), (2.7), and (2.8) to 

solve for the charge density, ρc. Then, Eqs. (B.1) and (B.2) are solved for the deformation. The 

constant parameters used for COMSOL simulations are shown in Table 2.3. The details of the 

modeling were presented in Appendix D. 

2.5.2. Simulation results 

Since an experimental method of measuring the cation migration and charge density 

within the polymer is not readily available, the COSMOL simulation results were used primarily 

to gain insight into these phenomena. The simulation of the IPMC actuating was performed 

under an input voltage with amplitude of 2 V and frequency of 1 Hz. Figure 2.11 illustrates the 

IPMC oscillation time-series during steady-state response. Within one oscillation cycle, the 

stress on the IPMC strip varied along the length. The stress on the IPMC increased as the IPMC 
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curved. At the maximum tip displacement, the stress reached its maximum. Figure 2.12 shows 

the simulation result of the IPMC tip displacement. As can be seen in the graph, after several 

cycles of oscillation, the quasi-steady state of the IPMC tip movement appeared to be reached. 

The amplitude of the oscillation is 2.1 × 10-3 m. The tip displacement result also shows a good 

agreement with the experimental result.  

Figure 2.13 show the cation concentration in the polymer near the top and bottom 

electrode separately. The location (x, y, z) of the measured points are (h - 1×106 m, W/2, L/2) and 

(-h + 1×106 m, W/2, L/2). A sinusoid variation of the cation concentration was observed during 

the deformation of the IPMC actuator within a range between 1.44 × 103 mol/m3 and 0.82 × 103 

mol/m3 for both points. As shown in Fig. 2.13, the cation concentration reached its quasi-steady 

state after several cycles of oscillation. It was also noticed that the cation concentration near the 

top and bottom electrode show an opposite variation, as was expected. The initial transient phase 

of actuation response can be verified experimentally. This can be thought of as the result of the 

initial cation distribution at the beginning of the first oscillation cycle (at t = 0 seconds) being 

different than at the beginning of following cycles, until the cation distribution at the start of 

each cycle is nearly constant. 

Figure 2.14 shows the cation concentration time series along the thickness direction in 

accordance with Fig. 2.11. The location of the measured line was y = W/2 and z = L/2. It can be 

found that in one cycle, the cation concentration near the upper and bottom electrode changed 

significantly, and remained the same in the central area. The simulation results indicated that the 

charge density at the boundary has a main effect on the stress of the IPMC. This result was partly 

verified the Nemat-Nasser and Li’s theory, as shown in Eq. (2.9). However, the relationship 
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between the charge density and induced stress cannot be verified based on current simulation and 

experimental results. 

 
Figure 2.11 IPMC strip displacement for one cycle during steady-state response for a 
sinusoidal voltage input of 4 V peak-to-peak amplitude and 1 Hz frequency. 

 
Figure 2.12 Simulation result of the IPMC tip displacement. 
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(a) 

  
(b) 

Figure 2.13 Simulation result of the IPMC cation concentration: (a) near top electrode, (b) 
near bottom electrode. 
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Figure 2.14 Simulation results of cation concentration along the thickness of IPMC. 
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2.6. Conclusions 

In this paper, a physical based model of IPMC was developed. The model is based on the 

charge dynamics model of the polymer membrane and a microstructure model of the electrode. 

Experiments were conducted to verify the model. Theoretical results and experimental results 

were compared and showed a good agreement. The results show that the model that considers the 

surface resistance change is better in predicting the actuating response of IPMC than the model 

without considering the surface resistance change. Finite element approach was implemented to 

study the charge dynamics inside the polymer. It was found that the charge at the boundary of the 

IPMC has a major effect on the performance of IPMC actuators. 
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Chapter 3. A multiple-shape memory polymer-metal composite actuator capable of 

programmable control, creating complex 3D motion of bending, twisting, and oscillation 

In this chapter, a research paper published in Scientific Reports is included.  The authors 

are Qi Shen, Sarah Trabia, Tyler Stalbaum, Viljar Palmre, Kwang Kim, and Il-Kwon Oh, in 

order of appearance on the article. This article reported an ionic polymer-metal composite 

actuator having multiple-shape memory effect, and is able to perform complex motion by two 

external inputs, electrical and thermal. This chapter was reprinted from Scientific Reports, Shen, 

Qi, Sarah Trabia, Tyler Stalbaum, Viljar Palmre, Kwang Kim, and Il-Kwon Oh. "A multiple-

shape memory polymer-metal composite actuator capable of programmable control, creating 

complex 3D motion of bending, twisting, and oscillation." Scientific Reports 6 (2016): 24462. 

K.J.K. conceived the idea and designed the project. Q.S., S.T., T.S., V.P. carried out the 

experiments, analyzed the data and wrote the paper.  I.O. helped analyzing the data.  All authors 

discussed the results and commented on the manuscript. 

3.1. Introduction 

Many life forms have unique organs that exhibit high deformability, maneuverability, and 

control. For example, most fish have a pectoral fin that can bend and twist in different ways to 

create various swimming motions, such as hovering and flapping [79]–[81]. Biomimicry has 

been a great inspiration to scientists and engineers. Materials and robotic systems have been 

developed over the last 25 years to reproduce the motion and abilities of life forms as best as 

possible [28], [82]–[88]. Various projects have been able to demonstrate the ability to mimic 

these natural soft tissue systems, although only to a limited extent in terms of control and 

simplicity [20], [89], [90].  
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One common method to develop a multiple degree-of-freedom actuator is to use 

mechanisms. Recently, robotics has emerged that are driven by hydraulic and pneumatic 

pressure. Marchese et al. [43] reported a soft-body robotic fish that can swim in three dimensions 

with its hydraulic actuator, which was driven by a gear pump. Tolley et al. developed a 

pneumatically powered soft robot with four flexible legs [91]. The robot could move under 

various conditions of terrain. Inspired by an elephant trunk, an actuator was developed for 

assistance in object handling [92]. This flexible robot, which was actuated pneumatically, could 

perform complicated deformations. On the other hand, many robotic systems with motor-driven 

actuators have been developed. For example, robotic arms with actuation having multiple 

degrees-of-freedoms have been studied for decades; these robotic arms could be driven by cables 

[93] or directly by motors [94].  Most actuators contain mechanisms that have large size and 

complex structures. Hence, their application is limited with regard to small-sized robots. 

Moreover, undesired motor noise could be produced when operating the system.  

Major contributions to these studies have been made on smart materials, such as shape 

memory alloys (SMA), shape memory polymers (SMP), piezoelectric materials, ionic polymer 

actuators, and other artificial muscle devices and systems [95]–[103]. Another method to achieve 

complex deformation is to use the shape memory effects of polymers and alloys. SMPs and 

SMAs can recover their original shapes by means of external stimuli, such as thermal or 

electrical inputs [17], [104].  Besides shape changing, however, most robotic systems require 

reciprocating motion, which enables them to propel themselves forward. Most SMPs respond to 

thermal change. They recover their shape over a relatively long period, and cannot respond 

instantaneously. This limits SMPs to be applied only for shape change; they cannot be used as 
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fast dynamic actuators. A recent application example of SMPs involved a crawling robot with an 

origami structure, developed by Felton et al. [105]. The shape memory composites were utilized 

only during the folding process. Complex electronics were embedded to achieve the crawling 

motion, and the overall motion was driven by motors. Shape-memory effects also have been 

reported in ionic polymer materials, such as Nafion™. Xie presented a highly-tunable method of 

creating multiple shape-memory effects in an individual Nafion™ sample by fixing different 

shapes at several temperatures [18]. Rossiter et al. showed that actuators using a Nafion™-based 

ionic polymer-metal composite (IPMC) have shape-memory effects [33].   

Another method involves using electro-mechanical transitions of smart materials, such as 

piezoelectric actuators or electroactive polymer actuators. Piezoelectric materials have been 

widely used as actuators on micro-robots, such as swimming and flying robots [95]. Many 

actuators have been developed using electroactive polymers. In particular, robots have been 

developed with ionic polymer-metal composites (IPMCs) as actuators and sensors [106]–[112]. 

For example, Palmre et al. developed a soft bio-inspired fin [113].  Complex deformation can be 

obtained by integrating IPMC actuators and by selectively actuating. However, most of the 

actuators perform a bending/oscillating motion near a neutral position. Maintaining a static 

position other than neutral due to hysteresis and creep in IPMCs24 has been shown to be difficult.  

To date, no single actuator has been capable of dynamic control of complex twisting and bending 

deformations, either simultaneously or separately. For example, SMP actuators can exhibit 

complex deformation by means of electric or thermal inputs, but they cannot achieve multiple-

input control simultaneously for independent control of twisting and bending motions [114], 

[115].  
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This study introduces a multiple degree-of-freedom soft multiple shape memory ionic 

polymer-metal composite (MSM-IPMC) actuator. Similar to the structure of IPMC actuators, the 

MSM-IPMC is composed of two or more electrodes separated by an ion-conductive polymer 

material (Figs. 3.1a, 3.1b, and 3.1c). Under an applied voltage, the transport of ions and water 

molecules as well as the associated electrostatic interactions within the polymer result in a 

bending deformation, which is the electro-mechanical actuation effect (Figs. 3.1d and 3.1e) 

[116]. The electro-mechanical actuation effect has the capabilities of resilience, inherent 

softness, and biocompatibility.  
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Figure 3.1 Properties of an IPMC made with Nafion™ membrane.  



www.manaraa.com

57 
 

 

(a) An IPMC sample in the evaporating pan. (b) A scanning electron microscopy (SEM) image 
of a cross-section of IPMC. The IPMC consists of the electrode on both sides and the polymer 
membrane between them. (c) An illustration of the IPMC operating principle. Deformation will 
occur if an electric field is applied across the IPMC, which causes the ions to redistribute along 
with the water molecule. The size of the IPMC is 50.78 mm in length, 9.82 mm in width and 
0.53 mm in thickness. (d) Continuous deformation of IPMC in one cycle under the voltage of 2.6 
V amplitude and 1 Hz frequency.  (e) Input voltage, output current, and displacement of IPMC 
versus time under the above voltage input.  

Shape memory polymers are materials that can memorize a permanent shape, and then 

later return to their original shape under specific conditions of external thermal, electrical, or 

other stimulation [16], [17]. They have the advantages of high elastic deformation, low cost, low 

density, and potential biocompatibility and biodegradability. Nafion™, perfluorinated alkene 

with short side-chains terminated by ionic group of sulfonate, was shown to be able to 

‘memorize’ multiple shapes under multiple temperature programming, which is the multiple 

shape-memory effect [18]. The Nafion™ has a broad glass transition temperature, which is from 

~ 55  to ~ 130 . Assuming the original shape of Nafion™ is S0. When the Nafion™ is fixed 

with an extra load in shape S1, heated to programming temperature Tp1 for three minutes and 

cooled to fixing temperature Tf1 for one minute, the shape S1 is ‘memorized’ within the 

temperature range from Tp1 to Tf1. Upon reheating the Nafion™ to Tp1, the Nafion™ can recover 

to shape S1. The broad glass transition can be divided into a series of individual glass switching 

transitions for each programmed shape. Different shapes S1, S2, S3 are heated to programming 

temperatures Tp1, Tp2, Tp3 and cooled to Tf1, Tf2, Tf3 respectively, where Tp1 > Tf1 > Tp2 > Tf2 > 

Tp3 > Tf3. Multiple shapes S1, S2 and S3 are programmed at each individual temperature range 

Tp1 ~ Tf1, Tp2 ~ Tf2, Tp3 ~ Tf3. When the Nafion™ is reheated from Tf3 to Tp1, multiple shapes 

recovered at each temperature range through glass transition. The crystalline segments, which 
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work as physical crosslinks, hold the programmed shapes during each glass transition. This 

multiple shape memory effect cannot be repeated. The multiple shape memory effect of a 

Nafion™ fiber is demonstrated in Fig. 3.2. Since it is controlled by the thermal input, the 

multiple shape memory effect can also be seen as thermo-mechanical actuation effect.  

Based on these two effects, which are electro-mechanical and thermo-mechanical actuation 

effect, the MSM-IPMC can perform deformation with multiple degrees of freedom. Several 

shapes can be programmed into MSM-IPMC material memory at various temperatures, which 

enables thermo-mechanical actuation effect. This type of actuator demonstrates high 

maneuverability by controlling two external inputs – electrical input and thermal input - allowing 

the complex twisting, bending, and oscillating motions that are frequently observed in nature-

made systems.  

Through the electro-mechanical actuation effect, the actuator is able to perform high-

frequency bending motions under external electrical input. With the thermo-mechanical 

actuation effect, the actuator can obtain stable, complex motion under external thermal inputs. 

Compared with the electro-mechanical actuation effect, the thermos-mechanical actuation effect 

occurs over a much longer timescale. The ability to control MSM-IPMC actuators by two 

external inputs, electrical and thermal, enables these devices to be used to perform highly 

complex motions, twisting, bending and oscillating simultaneously or separately. The twisting 

and bending motions are induced thermally and the oscillating motion is induced electrically. 

The bending motion and oscillating motion take place with the same rotation axis; previously, 

this could be realized only with existing actuator technologies by using multiple actuators or 

another complicated robotic system. Moreover, to the best of the authors’ knowledge, the MSM-
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IPMC actuator presented in this paper is the first solitary actuator capable of multiple-input 

control and the resulting deformability and maneuverability. 

 

 
Figure 3.2 Nafion™ fiber demonstrating quadruple shape memory cycles with a 1-g weight 
on the tip.  
Triple shapes of the Nafion™ fiber, 99.87 mm in length and 0.95 mm in diameter, were 
programmed with loops having different shapes wrapping around a metal rod in the water. The 
fiber with original shape, S0, was wrapped and programmed at 85  and fixed at 75  to achieve 
the first programmed shape, S1. The second shape, S2, and third shape, S3, was programmed at 
70 , 55  and fixed at 60  and 21 , respectively by wrapping around the rod with different 
cycles. Then, the Nafion™ fiber was reheated. The Nafion™ fiber recovered to S2’, S1’, and S0’ 
upon reheating to 55 , 70 , and 85 , respectively.  
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3.2. Results 

3.2.1. Shape programming of MSM-IPMC.  

The MSM-IPMC sample is shown in Fig. 3a. The length, width, and thickness of the 

MSM-IPMC are 51.81 mm, 10.49 mm, and 0.60 mm, respectively. The desired twisted shape of 

the MSM-IPMC was programmed prior to actuation. The broad glass transition temperature of 

the Nafion™ is ~ 55  to ~ 130 . The MSM-IPMC would be programmed and tested in 

deionized water and the boiling temperature of the water is 100 . Thus, the programming 

temperature of MSM-IPMC would be ~ 55  to ~ 100 . To program the shapes into the MSM-

IPMC, it was wrapped around a metal rod and fixed. By heating to programming temperature T1 

for three minutes and cooling to fixing temperature T2 for one minute, the shape was 

‘memorized’ within the temperature T1 to T2. When the MSM-IPMC was reheated to T2, it would 

recover to the programmed shape through glass transition. Dual shapes were programmed using 

this process. For distancing the two glass transitions, the programming temperatures were chosen 

to be 85 , 60  and the fixing temperatures were chosen to be 70  and 22 , respectively. 

To program the first shape, the MSM-IPMC was heated to 85  for three minutes and cooled to 

70  for one minute (Fig. 3.3b) in deionized water. Then, the MSM-IPMC was deformed on the 

other side further using the same metal rod. To program the second shape, the MSM-IPMC was 

heated to 60  for three minutes and cooled to 22  for one minute (Fig. 3.3c) in deionized 

water.  
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Figure 3.3 Programming of MSM-IPMC.  
(a) The original shape of MSM-IPMC. The length, width, and thickness of the MSM-IPMC were 
51.81 mm, 10.49 mm, and 0.60 mm, respectively. The tip of the MSM-IPMC was painted white 
to facilitate image analysis. A side line was painted on the MSM-IPMC to distinguish the 
deformation. (b) The first shape of the MSM-IPMC was programmed by heating at 85  and 
cooling at 70 . The MSM-IPMC was wrapped around a rod during the programming. (c) The 
second shape of the MSM-IPMC was programmed by heating at 60  and cooling at 22 . 

3.2.2. Deformation analysis of MSM-IPMC.  

Figure 3.4 shows the sequential photographs of an MSM-IPMC actuator in deionized 

water. A sinusoid AC voltage of 3.7 V initial amplitude and 1 Hz frequency was applied to the 

MSM-IPMC as external electrical input. An immersion heater was used to heat the deionized 

water as an external thermal input. To cover the programming temperature range, the water was 

heated from room temperature (22 ) to 90 . As the water temperature increased, the MSM-

IPMC gradually recovered to its previously programmed shapes.  

 
Figure 3.4 A MSM-IPMC actuator with multiple degree-of-freedom deformation.  
The sample was under a sinusoid AC voltage of 3.7 V initial amplitude and 1 Hz frequency. The 
water was heated from 22  (room temperature) to 90 . 
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During the experiments, oscillation of the actuator was noticed under the applied voltage. 

The MSM-IPMC gradually bent from the left side to the right side, as observed from the front 

view, and twisted in the clockwise direction, as observed from the top view. To measure the 3D 

deformation of the actuator, two cameras were used for recording, and image analysis was 

conducted. The tip of the MSM-IPMC was painted white to facilitate image analysis. Three 

points were tracked at two corners and the middle of the actuator tip. In general, the MSM-IPMC 

actuator performed twisting, bending, and oscillating motions simultaneously.   

Figure 3.5a shows the 3D track of MSM-IPMC in the middle of the tip. It was readily 

observable that the actuator deformed in a twisting and bending motion, resulting in a spiral 

motion of the tip. This was because the oscillation motion of the MSM-IPMC was perpendicular 

to the surface. Since the actuator was twisted and bended, it oscillated in 3D directions along its 

length, which resulted in the spiral motion of the tip. Figure 3.5b shows the 3D motion of the 

MSM-IPMC tip position, including the bending and twisting motion. 

Based on the results shown in Figure 3.5, the bending motion and twisting motion were 

analyzed separately. Figure 3.6a shows the corresponding bending displacement of the MSM-

IPMC. The bending displacement was obtained by calculating the displacement of the middle tip 

line point in the orthogonal direction. It can be seen that the MSM-IPMC performed a gradual 

but large bending motion, which resulted from thermal actuation via the thermo-mechanical 

actuation. This motion was combined with a higher-frequency, lower-displacement sinusoidal 

oscillation, which resulted from electro-mechanical actuation. From the thermal actuation aspect, 

a total bending displacement of 16.6 mm was measured with the temperature increasing from 

34.9 °C to 84.3 °C. The time of the total bending is 268.6 s; From the electrical actuation aspect, 
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the oscillation amplitude is approximately 0.13 mm in the orthogonal direction and the 

oscillation frequency is 1 Hz. 

Along with the bending motion, a twisting motion was performed by the MSM-IPMC. 

Figure 3.6b shows the twisting deformation of MSM-IPMC. The twisting angle was obtained by 

calculating the angle difference between the two end lines of the MSM-IPMC. As the 

temperature increased from 34.9°C to 84.3°C, the MSM-IPMC twisted by 36.6° due to the 

thermo-mechanical actuation. As the MSM-IPMC twisted, the electro-mechanical actuation 

effect resulted in an oscillation.   
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Figure 3.5 MSM-IPMC 3D motion trajectory.  
(a) 3D position track of MSM-IPMC actuator. The applied sinusoid AC voltage has 3.7 V initial 
amplitude and 1 Hz frequency. The measured temperature increased from 34.9  to 84.3 . (b) 
3D motion of the MSM-IPMC tip line.  
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Figure 3.6 Deformation of MSM-IPMC.  
(a) Bending displacement and temperature of MSM-IPMC versus time under an external 
electrical input of 3.7 V initial amplitude and 1 Hz frequency and thermal input from 34.9  to 
84.3 . (b) Twisting angle and temperature of MSM-IPMC versus time under external electrical 
and thermal input.  

3.2.3. Electrical analysis of MSM-IPMC.  

Figure 3.7a and 3.7b show the applied voltage and output current of the MSM-IPMC 

during the experiments. A sinusoid voltage signal with an amplitude of 3.7 V and frequency of 1 

Hz was applied to the MSM-IPMC. The MSM-IPMC was connected in series with a resistor in 
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the circuit.  It is interesting to note that as the temperature increased, the measured voltage 

response of the MSM-IPMC decreased from 3.7 V amplitude to 3.3 V amplitude. The voltage 

amplitude decreased by 10.8%. Meanwhile, the current increased from 217 mA amplitude to 374 

mA amplitude. The current amplitude increased by 72%. One possible reason is that with the 

increasing temperature of the MSM-IPMC (see Fig. 3.6), the resistance of the surface electrode 

decreased and the movement of the ion in the polymer increased. As a result, the total electrical 

impedance of the MSM-IPMC decreased and the total electrical resistance of the circuit 

decreased. The current of the circuit increased and the voltage on the MSM-IPMC decreased. 

Figure 3.7c show the electrical impedance of MSM-IPMC. It can be seen that the electrical 

impedance shows an overall decrease from 16.3 Ω to 8.7 Ω as the temperature increases. The 

mechanical impedance change of MSM-IPMC has yet to be studied. 
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Figure 3.7 Impedance response of MSM-IPMC.  
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(a) Measured voltage response of MSM-IPMC versus time. The initial amplitude of sinusoid 
voltage input was 3.7 V and the frequency was 1 Hz. (b) Measured current response of MSM-
IPMC versus time. (c) Electrical impedance of MSM-IPMC versus temperature. 

In addition, experiments were conducted to obtain the fixity and recovery rates of the 

MSM-IPMC. The MSM-IPMC was bended by wrapping around a cylinder, namely the fixed 

shape. The programming process is the same as previous. The first programmed shape S1 was 

programmed by heating to 85  and cooling to 70 . The second programmed shape S2 was 

programmed by heating to 60  and cooling to 22 . The MSM-IPMC recovered from S2 to S1 

upon reheating above 70 . The deformation of the MSM-IPMC was measured through image 

analysis and the strain was derived based on the deformation. By comparing the strains of fixed 

shape and programmed shape, the fixity of S1 and S2 are obtained as 96.86 % and 80.19 % 

respectively. Through comparing the strains of programmed shape and recovered shape, the 

recovery rate of S1 is obtained as 89.83 %. 

3.3. Discussion 

This study successfully demonstrates for the first time that electro-mechanical and 

thermo-mechanical actuation can be separately performed on a single actuator, simultaneously. 

These multiple inputs, which is electrical and thermal inputs, allows for more complex control 

than before. The underlying physics of these two actuation properties of MSM-IPMC have been 

explored. It has a sandwich structure of a thin ion-exchange membrane with noble metal 

chemically plated on the surface as electrodes. With a voltage applied to the surface, the free 

cations and water molecules migrate from the anionic binding sites to the surface cathode 

electrode within the membrane [116]. The electrostatic interaction results in local swelling, 

which leads to the bending motion, and hence, the electro-mechanical actuation. The thermo-
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mechanical actuation of Nafion™ results from the destabilization of electrostatic interactions 

between ions; meanwhile, the temporary shapes are held by the crystalline segments of Nafion™ 

as physical crosslinks [16].  

Based on Figure 3.7, it was found that temperature had an influence on the electro-

mechanical actuation effect of the MSM-IPMC. The resistance of the MSM-IPMC decreased as 

the temperature increased. This property could be applied on the thermal feedback of the MSM-

IPMC. By measuring the input voltage and output current of the MSM-IPMC, the resistance 

could be derived. Based on the resistance change, the temperature of the MSM-IPMC actuator 

could be obtained. 

The actuator presented above demonstrated complex 3D deformation. The bending, 

twisting, and oscillating motions of the actuator could be controlled simultaneously or separately 

by means of thermal-mechanical and electro-mechanical actuations. These two separate 

actuations are significant properties of the presented actuator. Based on previous work, the 

Nafion™ has multiple shape-memory properties and can be programmed into multiple shapes 

[18] and then programmed by thermal or electric inputs [33]. One assumption is that the broad 

glass transition temperature could be regarded as the consecutive distribution of a series of glass 

transitions [17]. Within the range of the broad glass transition temperature, ~55  to ~130 , the 

Nafion™ could be programmed with multiple unique shapes, and recovered under different 

temperatures. By programming the actuator, complex shape change of the actuator could be 

achieved with thermal control, and the thermo-mechanical actuation could be used for overall 

structural deformation. Meanwhile, the MSM-IPMC could perform an oscillation motion by 

applying voltage on the surface electrodes. The actuation amplitude and frequency of the 
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oscillation could be adjusted by changing the amplitude and frequency of input voltage. Thus, 

the electro-mechanical actuation of the MSM-IPMC could be utilized for locomotion.  

In conclusion, an MSM-IPMC actuator with complex deformation capabilities was 

developed. The MSM-IPMC could be controlled separately by means of thermal and electrical 

inputs. It had the advantages of resilience and inherent softness; moreover, the electrical 

characteristics of the MSM-IPMC changed as the temperature changed. Potentially, it could be 

applied to medical devices and biomimetic robotics.  

One potential application of MSM-IPMC is in underwater biomimetics, which has been 

studied for many years. The fish fins undergo considerable deformation, which enables the fish 

to generate propulsive forces and control body position. Robotic flapping foil devices were 

developed in order to understand the significance of flexible propulsive surfaces for locomotor 

performance [117].  A biomimetic fin was developed based on the monolithic fabrication of 

IPMC actuators [15]. Complex deformation modes can be produced. However, most of the 

devices contain complicated systems. MSM-IPMC can be used as a single actuator that performs 

similar deformations as does a fish fin. By programming MSM-IPMC to different desired 

shapes, and by controlling the thermal and electrical inputs, multiple degrees-of-freedom 

deformation of the actuator can be performed. There are three methods that can possibly be used 

to heat the actuator. The first method is adding another soft heating film on the surface of MSM-

IPMC, such as PCT (Positive Temperature Coefficient) heating element. By controlling the input 

voltage on the heating film, the heating of the actuator can be controlled. The second method is 

induction heating. An additional layer of iron oxide nanoparticles will be plated on the surface of 

the actuator. Localized heating on the actuator can be generated by applying an alternating 
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electromagnetic field. The third method is heating the water directly. An immersion heater with 

temperature feedback control will be used to heat and control the water temperature. Another 

potential application is the vessel catheter. Lei et al. [118] developed a tube-shaped IPMC; 

however, bending of the tube-shaped IPMC was limited due to the stiffness of the tube. With the 

MSM-IPMC, new catheters can be fabricated with large deformations of multiple degrees of 

freedom, a capability that can be utilized in complex vessel networks. A flexible heating wire 

will be inserted inside the catheter for thermal controlling. A layer of thermal insulation film will 

be covered on the surface of the catheter to insulate the heat conduction between the body and 

the catheter. 

3.4. Methods  

3.4.1. Sample preparation.  

MSM-IPMC samples were prepared for the experiments. First, after roughening the 

surface of the Nafion™ -117 membrane sheet, the membrane was immersed in 3% hydrogen 

peroxide (H2O2) to eliminate organic impurities and in 1 M sulfuric acid (H2SO4) to remove the 

metallic impurities. Second, by immersing in a platinum complex solution (Pt(NH3)4Cl2·H2O) 

and then in a sodium borohydride solution (NaBH4), the membrane sheet was plated with the 

platinum metal (Pt) particles. To lower the surface resistance, the composite sheet was suspended 

in the Pt complex solution. Hydroxylamine hydrochloride (H2NOH·HCl) and hydrazine 

(NH2NH2·H2O) were added to the solution periodically. Finally, after the plating process, the 

sheet was soaked in a solution of lithium chloride for ion exchange. A more detailed procedure is 

presented by Kim et al. [8].  
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3.4.2. Experiments.  

Figure 3.8 shows the schematic of the experimental setup. The MSM-IPMC was 

submerged in deionized water of 22 . One end of the MSM-IPMC was fixed by a clamp. 

Voltages were applied on the MSM-IPMC through the clamp contacts. The voltages were 

provided by a signal generator (FG-7002C, EZ Digital Co., Ltd) and amplified by a power 

amplifier (LVC-608, AE Techron, Inc.). An immersion heater (3656K169, McMaster-Carr) was 

used for heating the water. A thermal resistor (PRTF-11-2-100-1/8-6-E, Omega®) was used to 

measure the water temperature. The signals were measured through DAQ (NI SCB-68, National 

Instruments). The input voltage, current, and temperature were recorded simultaneously, using 

LabVIEW 8 Software. The MSM-IPMC was reheated from 22  to 90 .  

 
Figure 3.8 Experimental setup. The experimental setup used for measuring thermal and 
electromechanical responses of the MSM-IPMC actuator. 
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The radius of the curvature ρr of the MSM-IPMC can be denoted as [119] 
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where L is the length and δ is the tip deformation of the MSM-IPMC. By relating the radius of 

the curvature ρr to strain ε, one can obtain 
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where h is the thickness of the MSM-IPMC. The fixity can be obtained by comparing the strains 

of fixed shape εf and programmed shape εp 
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The recovery rate can be obtained by comparing the strains of programmed shape εp and 

recovered shape εr 

p

r
rR




$� %100 .                                                                    (3.4) 

3.4.3. Image analysis.  

To measure the 3D deformation of the MSM-IPMC, image analysis was used. Two 

cameras were set at different positions and recorded the deformation of MSM-IPMC during the 

experiments. Using an open source MATLAB® program developed by Hedrick [120], the videos 

from the two cameras were analyzed to measure the twisting angle and the bending deformation 

of the MSM-IPMC. Prior to imaging actuator deformation, the image analysis program was 

calibrated to a set coordinate frame. This was done by creating a coordinate frame specifically 
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for the volume of space that the tank of water occupied. The videos were analyzed in the 

program along with the calibration coefficients file. Three points at the free end tip were tracked 

in the videos to determine the deformation and twist of the MSM-IPMC. 

To calculate the bending deformation of the MSM-IPMC, the coordinates of the two 

corners Xu, Yu of the MSM-IPMC fixed end were measured as � �321 ,, uuu xxx  and � �321 ,, uuu yyy . 

Another point Zu, which was in the same horizontal platform of Xu, Yu and not on the line XuYu , 

was measured; the coordinate was � �321 ,, uuu zzz . Assuming the projective point of Zu on line XuYu 

is Au, Au’s coordinate, � �321 ,, uuu aaa  can be obtained by solving the following equations  

� �� � � �� � � �� � 0333322221111 ���	��	�� uuuuuuuuuuuu zaxazaxazaxa                          (3.5) 

� � � � � � � � 022221111 ������ uuuuuuuu xyxaxyxa                                      (3.6) 

� � � � � � � � 033331111 ������ uuuuuuuu xyxaxyxa                                          (3.7) 

Line XuYu and line ZuAu were orthogonal to each other, and line ZuAu was in the thickness 

direction of the MSM-IPMC in a neutral position. By calculating the projective point of the 

MSM-IPMC tip point on line ZuAu, the bending displacement of the MSM-IPMC could be 

obtained. Assuming the coordinate of tip point Zd was � �321 ,, ddd zzz , the coordinate projective 

point Ad on line ZuAu could be obtained by using the following equations  
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� �� � � �� � � �� � 0333322221111 ���	��	�� ddudddudddud zaaazaaazaaa                      (3.8) 

� � � � � � � � 022221111 ������ uuuduuud azaaazaa                                           (3.9) 

� � � � � � � � 033331111 ������ uuuduuud azaaazaa .                                     (3.10) 

The coordinates of the two corners Xu, Yu of the tip were measured as � �321 ,, ddd xxx  and 

� �321 ,, ddd yyy . The twisting angle θ could be obtained by calculating the angle difference 

between vector XuYu and vector XdYd 
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Chapter 4. Theoretical and experimental investigation of shape memory properties of ionic 

polymer-metal composite  

In this chapter, a research paper published in Smart Materials and Structures is included.  

The authors are Qi Shen, Viljar Palmre, Kwang J. Kim, and Il-Kwon Oh in order of appearance 

on the article. In this article we laid out a theoretical framework in terms of finite element based 

free-energy density to describe the shape memory effect of the IPMC. This chapter was reprinted 

from Smart Materials and Structures, Shen, Qi, Viljar Palmre, Kwang J. Kim, and Il-Kwon Oh. 

"Theoretical and experimental investigation of the shape memory properties of an ionic 

polymer–metal composite." Smart Materials and Structures 26, no. 4 (2017): 045020, with the 

permission of IOP Publishing.   

KJK conceived the idea and designed the project. The primary contributions to analytical 

physics based modeling and model coupling are from QS.  The experimental work was done by 

QS and VP.  The data analysis, simulations, conclusions, and discussion were a combined effort 

from the whole research team. 

4.1.1. Introduction 

The ionic polymer-metal composite (IPMC) is one kind of electroactive polymers [40], 

[46], [109]. It is composed of an ionic polymer membrane with two layers of electrodes 

chemically plated on both sides [4], [25], [28], [29], [48], [121]. Its most significant 

characteristics are the electro-mechanical and mechano-electrical transactions. The free cations 

will begin to migrate inside the polymer induced by an applied electric field. The ions 

distributions will cause the IPMC to generate a large bending deformation. Meanwhile, the 

mobile cations will distribute if the IPMC has a mechanical deformation. As a result, a detectable 



www.manaraa.com

77 
 

 

electrical signal can be produced at both electrodes. With the capabilities of resilience, inherent 

softness and biocompatibility, the IPMC has a potential on underwater actuator/sensor. 

Applications on biomimetic robotics, biomedical devices and energy harvesters have been 

demonstrated [11], [13], [14], [21], [49], [122]–[124], [9]. Shape memory polymers are materials 

that can memorize a permanent shape and then later return to their original shape under specific 

conditions of external thermal, electrical or other stimulations [125]–[127]. They have the 

advantages of high elastic deformation, low cost, low density and potential biocompatibility and 

biodegradability. Their ability to remember multiple shapes has attracted significant attention 

from scientists and engineers for the application of actuators, sensors and smart devices [128].  

The shape memory properties of IPMC has recently been studied. Xie reported that 

annealed dry Nafion can be programmed to memorize four different shapes [18]. The permanent 

shapes were deformed at different temperatures and fixed at lower temperatures. By reheating 

the Nafion subsequently, the programed shapes were obtained respectively. With the broad glass 

transition range, the Nafion can be potentially programmed at plenty of unique shapes, which can 

be recovered at different temperatures respectively. Rossiter et al. presented the shape memory 

properties of Nafion-based IPMC [33]. The IPMC was programmed at the deformation induced 

by either external force or by electrical actuation. Slow decay was also observed along with the 

shape memory effect. However, to date, while experimental investigations on the shape memory 

properties of Nafion-based IPMC have been done, few work have been done concerning the 

theoretical investigation of the shape memory effect of the IPMC. As a result, a poor 

understanding exists on the physics of the shape memory properties of IPMC. A faithful model is 

desirable to explain the thermo-mechanical transaction phenomenon of IPMC. 



www.manaraa.com

78 
 

 

In this paper, a demonstration of the shape memory effect of Nafion fiber was firstly 

developed. Multi-shape programming of the Nafion fiber was conducted and the Nafion fiber 

was shown to be able to achieve a series of complex shapes. Secondly, a physics-based model of 

the IPMC was presented. The finite element approach was used to model the mechanical portion 

of the IPMC. The free energy density theory was used to analyze the shape memory properties of 

the IPMC. Finally, IPMC strip samples were prepared. Experiments were conducted to test the 

IPMC strip. Simulation of the model was performed and the results were compared with the 

experimental data.  

4.2. Results 

4.2.1. Multiple shape memory properties of cylindrical Nafion 

Xie has reported the quadruple shape memory properties of Nafion strip [18]. Compared 

with the strip, the Nafion cylinder with two dimensions can achieve more complex locomotion. 

In the current paper, we presented the multiple shape memory properties of Nafion cylinder. 

Nafion pellets were heated to above fusion temperature. By extruding the molten Nafion through 

a brass extruder dye, the cylinder shape of the Nafion was obtained. A Nafion cylinder with the 

length of 99.87 mm and diameter of 0.95 mm was fabricated and used for the test. The Nafion 

cylinder was wrapped around a metal rod and fixed. Triple shapes were programmed with 

different loops of the Nafion wrapping around the rod in an oven. The cylinder with original 

shape S0 was wrapped and programmed at 130  and fixed at 100  to achieve the first 

programmed shape S1. The second shape S2 was programmed at 100  and fixed at 70 . By 

programming the third shape S3 at 100  and fixed at 20 , the triple shape programming of the 

Nafion cylinder was completed.  
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Then the Nafion cylinder was reheated. The Nafion cylinder recovered to S2’, S1’ and 

S0’ upon reheating to 70 , 100  and 130  respectively. Figure 4.1 shows the Nafion cylinder 

demonstrating quadruple shape memory cycles. Figure 4.2 shows the shape memory cycle of the 

Nafion cylinder in accordance with Figure 4.1. The spiral of the cylindrical Nafion was 

programmed to increase during the programming period and decreased as the reheating 

temperature increased during the recovering period. Figure 4.3 shows the recovering ratio of 

Nafion cylinder at different programming temperatures. It can be seen that with the programming 

temperature increasing, the recovering ratio decreases. Rossiter presented the spiral deformation 

of the IPMC strip in the shape memory cycle [33]. The Nafion-based IPMC shows to have a 

thermo-mechanical shape memory effects but the recovery is not complete. The reasons may be 

as follows: 1) the IPMC in [33] is based on the thin Nafion membrane. Comparing with the 

cylinder shape of current paper, the strip is relatively difficult to recover in a spiral deformation. 

2) The cylinder in the current study was programmed at the temperature of 130 , 100 , 70  

respectively in the dehydrated status, which is higher than the programming temperature of 60  

in the hydrated status for the IPMC in [33]. 3) Electrodes were plated on the surface of the IPMC 

in [33], which will have some plastic effects on the deformation of the strip.  
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Figure 4.1 Multiple shape memory properties of Nafion cylinder. 
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Figure 4.2 Shape memory cycle of Nafion cylinder. 

 
Figure 4.3 Recovering ratio of Nafion cylinder at different programming temperatures. 
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4.2.2. Modeling of the IPMC 

The model of the IPMC is presented. The dynamics of the IPMC strip is described based 

on the finite element method. The IPMC strip is assumed to satisfy the following restrictions: 1) 

the IPMC is divided by a series of elements along the direction of thickness, as shown in Figure 

4.4. Each element was analyzed and modeled individually. 2) The strain along the length 

direction λl is dominate compared with the strains λw, λh in the width and thickness directions 

respectively, and λw = λh. The strain λl of each element is also the main reason that causes the 

bending of the IPMC strip. 3) The length of the midline of the strip is constant. Thus, as the strip 

bends, the elements on the inner side are compressed and the elements on the outer side are 

stretched. The size of original IPMC strip element is L, W, dH. In the current study, we only 

consider the single shape memory effect. The IPMC was programmed at temperature T1 and 

cooled in room temperature water. When the IPMC emerged in the water at temperature T, 

which is above the programming temperature T> T1, the high-temperature water molecule was 

absorbed into the Nafion, and the IPMC strip recovered to its original shape. As a result, the size 

of the element changes from L, W, dH to l, w, dh. The strain along the z, y, x direction can be 

expressed as 

L
l

l �( , 
W
w

w �( , 
dH
dh

h �( .                                  (4.1) 

By relating the length of the element to the deformation of the strip, the length can be rewritten 

as 

� � � �
l
ztrl )

��                                            (4.2) 
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where t is the position of the element in the x direction, ω(z) is the deformation of the element, r 

is the radius of the curved IPMC midline and is expressed as 

�
lr �

                                         (4.3) 

where γ is the angle of the curved beam and is denoted as 

� �
l
z)� �tan .                                        (4.4) 

The nominal stress on the z, y, x direction is denoted as 

hwl
l

l wdh
FS ((��� , hlw

w
w ldh

FS ((��� , wlh
h

h lw
FS ((���                    (4.5) 

where σl, σw, σh are the actual stress and Fl, Fw, Fh are the nominal force acting on the z, y, x 

directions. Based on (4.5), one can obtain [129], [130] 

vChwl 	�1(((                                              (4.6) 

where v is the volume per water molecule, and C is the nominal concentration of the solvent in 

the polymer matrix. Gibbs first developed the theory of free-energy density for describing the 

behavior of swelling gel [131]. Flory presented the free-energy function for polymeric gels 

[132]. The Flory theory was later extended to polyelectrolyte gels [133]–[135]. The free energy 

density E of the element can be expressed as [132] 

ionpms EEEEE 			�                                   (4.7) 

where Es is the stretching free-energy, Em is the mix free-energy, Ep is the polarizing free-energy, 

and Eion is the ions transporting free-energy. Since no ions in the water move inside the matrix of 
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the polymer, the mix free-energy is Eion = 0. Assuming the dielectric constants of the nonpolar 

polymer and nonpolar water are equivalent, the free energy of polarizing the polymer is Wp = 0. 

Based on Flory’s theory, (4.7) can be rewritten as [132] 
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where N is the number of polymer chains divided by the volume of the polymer element, 

KJk /1038.1 23�$�  is the Boltzmann constant, T is the absolute temperature, and χ is the 

enthalpy constant during the mixture of the polymer matrix and the solvent. The differentiation 

of (8) can be written as [130] 
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where D is the ratio between the strain in the z direction and the strain in the x and y direction 

respectively, and is expressed as  
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After the deformation of the element in the water, the mixture system free energy density of the 

polymer and the water is expressed as 

� � � � � � � �dHdhFWwFLlFlwdhEG hwlhwl ������� ((( ,, .              (4.11) 
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The free energy combines the enthalpy and entropy. The mixture system tends to be 

stable as the polymer and the solvent are mixed. When the whole system reaches the steady 

status, a key assumption is that the system free energy achieves the minimum. The differentiation 

of the free energy G reaches the minimum. With small variation, the strain λl, λw, λh can be 

expanded to λl+δλl, λw+δλw, λh+δλh. The mixture system free energy density is rewritten as [130] 
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To achieve the minimum of (4.12), the first-order differential functions of (4.12) are assigned 

zero. One can obtain 
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Through integrating the length direction stress of the element, the total length direction stress on 

the IPMC strip can be expressed as 

�� ��
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�� .                                        (4.14) 

By relating the bending moment on the IPMC strip to the induced stress, one can obtain 

I
Mh

��                                              (4.15) 
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where I is the moment of inertia of the strip and 332 whI � . Based on the linear beam theory, 

the relation between the displacement ω of the strip and the bending moment M can be denoted 

as [119] 

� �
YI
M

z
z
�






2

2)                                               (4.16) 

where Y is the Young’s Modulus. By combing (4.14), (4.15) and (4.16), an ordinary differential 

equation (ODE) of ω(z) is obtained. The boundary conditions of the ODE are � � 00 �)  and 

� � 00 �

 z) . By solving the ODE, the deformation ω(z) of IPMC can be obtained. The 

MATLAB was used to solve for ω(z). 

 
Figure 4.4 Schematic illustration of IPMC beam. 
 

4.2.3. Experimental verification 

Experiments were conducted to study the shape memory effect of the IPMC. Three IPMC 

samples were utilized for the experiments. The dimensions were shown in Table 4.1. The 

definition of L, W and 2h were shown in Figure 4.4. The sample was curved in a fixture and held 

in place during the programming period. The first step was to immerse the IPMC strip in a hot 

water bath with the programming temperature Tp ranging from 50  to 70 . Then it was cooled 

in room temperature water at the fixing temperature Tf of 20 . Finally the fixture was removed 

L
W

2H

dH

zy
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and the IPMC sample at the curved shape was fixed. A back-relaxation of the IPMC sample was 

noticed after the fixture was removed and the back-relaxation deformation was different at 

different programming temperatures. Figure 4.5 shows the experimental set up for the shape 

memory study. The sample was clamped vertically at one end and immersed in a water tank at 

different temperatures Tt from 20  to 80 . The tank can be filled with hot water and cold water 

to the desired temperature. A thermometer was used to measure the temperature of the water 

during the experiments. The tip displacement of the sample was measured with the grid paper 

attached to the water tank. The IPMC was measured every 10 minutes after the water was 

reheated to the next temperature. The experiments were repeated three times.  

 
Figure 4.5 Experimental set up for the shape memory properties. 
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Table 4.1 Dimensions of the IPMC samples. 
 

Item L (mm) W (mm) 2h (mm) 

IPMC 1 51.07 9.94 0.57 

IPMC 2 37.05 9.94 0.57 

IPMC 3 22.16 9.94 0.57 

 

Figure 4.6 shows the deformation of IPMC strip at different temperatures under the 

programming temperature Tp of 60 . The thermo-mechanical shape memory effect was 

presented. It can be seen that with the reheating temperature increasing, the programmed IPMC 

gradually relaxed back to its original shape. Shahinpoor presented the radius of the curvature ρr 

of IPMC beam as [78] 
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22 	
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l
r .                                             (4.17) 

The radius of the curvature ρr is in turn related to the maximum tensile (positive) or compressive 

(negative) strains, which can be expressed as 

r

h
�

 " .                                       (4.18) 

The shape recovery ratio of the IPMC sample can be expressed as 
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where εt is the strain under current temperature, εp is the strain at the fixing temperature of 20  

and εr is the strain at the final reheat temperature of 80 . Similar definitions were presented in 

[18], [136]. 

 
Figure 4.6 Thermo-mechanically shape of IPMC at different temperatures. 

 

Figure 4.7 shows the comparison of the experimental results and simulation results of 

shape recovery of different IPMC samples. The temperature varies from 20 °C to 80 °C. It is 

found that the model can well describe the experimental data. Based on Figure 4.7, it can be seen 

that as the temperature constantly increases, initially the shape recovery increases gradually and 

then it rises rapidly. Finally, the sample slowly recovers to its original shape. The shape recovery 

decreases as the programming temperature increases, which has a good agreement with Figure 

4.3. It was also noted that the reheat temperature of glass transition is lower than the 

programming temperature. Compared with the shape recovery ratio of Nafion cylinder shown in 

Figure 4.3, it can be seen that the shape recovery ratio of the IPMC strip is generally lower than 

that of the Nafion cylinder. One explanation is that the plastic deformation of the metal 

electrodes plated on the surface of the IPMC strip during the programming phase relatively holds 

the IPMC from recovering. 
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Figure 4.8 shows the back-relaxation deformation of the IPMC samples at different 

programming temperatures. When the fixture was removed from the IPMC sample, back-

relaxation occurred and there is the difference between the desired shape with the fixture and 

actually programmed shape without the fixture. It was found that with the programming 

temperature increasing, the IPMC samples has a decreasing back-relaxation. Considering the 

results of Figure 4.6, it is indicated that by increasing the programming temperature, the fixed 

shape of the IPMC is more close to the desired shape, and less close to its original shape when 

the IPMC recovered.  

 
(a) 
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(b) 

 
(c) 

Figure 4.7 Comparison of the simulation and experimental results of the IPMC shape 
recovery at different programming temperatures: (a) IPMC 1; (b) IPMC 2; (c) IPMC 3. 
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Figure 4.8 Back-relaxation deformation of the IPMC at different programming 
temperatures. 
 

4.3. Discussion 

4.3.1. Application of thermo-mechanical transaction 

IPMCs have received significant interests as soft biomimetic actuators/sensors[137], 

[138]. Tremendous works have been done on its application in the fields of biomimetic robotics, 

biomedical devices and human affinity applications, such as underwater robots, active catheters 

and underwater soft sensors [13], [106]. Although the shape memory properties of the Nafion-

based IPMC have been experimentally investigated, few work has been done on its potential 

applications or demonstrations. In this paper, a demonstration that uses the thermo-mechanical 

shape memory properties of Nafion fiber was presented. The demonstration has shown the 

Nafion fiber’s capabilities of achieving a series of complex shapes with multiple shape 
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programming. These results indicated that the thermo-mechanical transaction phenomenon of the 

Nafion can be potentially applied in the field of biomedical and human affinity devices, 

including active cannulas, and soft catheters. Previous works have demonstrated the thermo-

electrical shape memory properties of the IPMCs [33], [139]. Thermo-electrical shape memory 

programming was performed. By plating electrodes on the surface of the Nafion, the electro-

mechanical/mechano-electrical properties and the thermo-mechanical properties of IPMC can be 

coupled. More interesting actuating/sensing demonstrations can be presented in the near future. It 

was also noticed that in both current paper and previous work, to achieve the shape recovery, the 

temperature of IPMC was changed by changing the liquid surrounding it, which is not applicable 

in the real world. To solve this problem, the thermoelectric cooler will be utilized for the fast 

programming heating and fixing cooling during the actuation responses of IPMC.  

4.3.2. Model of the shape memory properties  

Considerable efforts have been made to describe the electro-mechanical transaction of 

IPMC [54], [140]–[142], such as the swelling theory that the migration of the hydrated water 

results in the deformation of the IPMC [143]–[146], the influence of the electrode conductivity 

on the transduction behavior of IPMC [56], the cations redistribution which results in the 

electrostatic stress [27], [61], [147], [148], the effect of the electrodes on the charge dynamics of 

IPMC [62], and the interference between the IPMC surface electrode and the membrane [63], 

[64]. The mechano-electrical transaction of IPMC has also been studied [73], for instance, 

underwater object tracking [149], [150], energy harvesting [20], [151], surface electrode sensing 

[152], [153] and parametric effects [154]. Most of the models are based on the ionic immigration 

induced by the electric field for actuating and concentration variations of ions results from 
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Nafion deformation for sensing. Regarding the thermo-mechanical transactions of IPMC, the ion 

migration is not the major factor which results in the deformation of the IPMC. To explain this 

phenomenon, the free energy density theory was utilized. The volume swelling/shrinking of the 

Nafion membrane and the temperature variation results in the shape recovery. Through 

experiments, the results show that the proposed model can well describe the thermo-mechanical 

transactions of Nafion-based IPMC. The current study is beneficial for identifying the 

mechanism behind the shape memory feature of IPMC. 

4.4. Methods 

4.4.1. Sample preparation 

IPMC strip samples were prepared for the experimental validation. The surface of the 

NafionTM-117 membrane sheet was polished and the membrane was immersed in 3% hydrogen 

peroxide (H2O2) to eliminate organic impurities and in 1 M sulfuric acid (H2SO4) to remove the 

metallic impurities. Then the membrane sheet was plated with the platinum metal particles by 

being immersed in a platinum complex solution (Pt(NH3)4Cl2·H2O) and after that it was 

immersed in a sodium borohydride solution (NaBH4). To lower the surface resistance, the sheet 

was suspended in the solution with hydrazine (NH2NH2·H2O) and hydroxylamine hydrochloride 

(H2NOH·HCl) being added to the solution. After the plating process, the sheet was soaked in a 

solution of lithium chloride for the ion exchange.  

4.4.2. Parameter identification 

To perform the simulation of the theoretical model, the parameters need to be identified. 

Some parameters can be measured directly, such as the dimensions of the IPMC sample and the 

temperature. Some are physical constant, such as the Boltzmann constant. The rest need to be 
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identified, such as the enthalpy constant. In the current study, the parameters of the model were 

identified based on the experimental results using the least-square method in MATLAB. For 

each programming temperature, the parameters were identified separately.  
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Chapter 5. Multiphysics modeling and experimental investigation of a soft multiple-shape-

memory ionic polymer-metal composite actuator 

5.1. Introduction 

The Ionic Polymer-Metal Composite (IPMC) has been studied for decades due to its 

unique mechano-electrical and electro-mechanical transaction mechanisms [140], [155]–[157]. It 

is based on the ionic polymer materials such as Nafion, Aquivion and GEFC. On both sides, a 

layer of metal is chemically plated, which act as the electrodes. Chemically stable metals, such as 

gold and platinum, are usually used for this purpose. Recently, palladium and graphene have also 

been used to plate the surface of the polymer [121], [138], [156], [158]. When a voltage is 

applied on both sides of the IPMC, the mobile ions inside the polymer migrate to the cathode and 

accumulate at the boundary of the polymer, causing the IPMC to bend. If the IPMC is 

mechanically bent, a detectable voltage is generated on the surface of IPMC. Many physical 

models have been developed to describe the transaction [61], [140], [159]–[161]. The most 

interesting characteristics are its inherent softness, resilience and biocompatibility. A large 

number of scientist and engineers have developed many robotic systems using IPMCs as sensors 

and actuators [13], [106], [150], [162]–[164]. 

Recently, it was found that Nafion, which is the intermediate layer of IPMC, has multiple 

shape memory effects [18]. The original shape of the Nafion is named S0. To program the first 

shape, the IPMC is formed into shape S1, heated to temperature T1, then cooled  to a lower 

temperature T1’, such that T1’ < T1. The programming process of S1 is then completed. The 

shape S1 is ‘memorized’ within the range from T1’ to T1. The process can be repeated multiple 

times. Different shapes S2 and S3 can be programmed within the temperature range T2’ ~ T2, 
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T3’ ~ T3. Meanwhile, it should be noted that T3’ < T3 < T2’ < T2 < T1’ < T1. As the polymer is 

reheated from T3’ to T1, the polymer recovers to programmed shapes from S3 to S0 at each 

corresponding temperature T3, T2 and T1. Figure 5.1 shows the illustration of the multiple shape 

memory effect. These recoveries result from the broad glass transition ranges over the recovery 

temperatures. Nafion with the ability to remember multiple shapes has promising potential 

applications in actuators, sensors and smart devices if such a feature is effectively needed. 

 
Figure 5.1 Illustration of the multiple shape memory effect. 
 

Based on these two effects, which are the electro-mechanical transaction and multiple 

shape memory effect, we introduce a new actuator, multiple-shape-memory ionic polymer-metal 

composite (MSM-IPMC) [139]. This actuator can perform deformations of multiple degrees of 

freedom.  

The shape memory properties of Nafion have recently been studied. Xie reported that 

annealed dry Nafion sample can be programmed to memorize up to four different shapes [18]. 

Compared with the strip, the Nafion fiber sample with two dimensions can achieve more 
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complex locomotion. The permanent shapes were deformed at different temperatures and fixed 

at lower temperatures. By reheating the Nafion subsequently, the programmed shapes were 

obtained respectively. With the broad glass transition range, the Nafion can be potentially 

programmed at plenty of unique shapes, which can be recovered at different temperatures 

respectively [139]. Rossiter et al. presented the shape memory properties of Nafion-based IPMC 

[33]. The IPMC was programmed at the deformation induced by either external force or by 

electrical actuation. Slow decay was also observed along with the shape memory effect. Xiao et. 

al applied a finite deformation, nonlinear viscoelastic model with a discrete spectrum of 

relaxation times to describe the shape memory behavior of the Nafion [34]. A theory was also 

proposed to explain this behavior [1]. The critical point for this theory is that a single broad 

thermal transition can be regarded as the collective contribution of numerous infinitely sharp 

transitions continuously distributed in the broad temperature range. Previously we laid out a 

theoretical framework in terms of finite element based free-energy density to describe the shape 

memory effect of the IPMC [165]. 

To date, while some experimental tests on the shape memory properties of Nafion have 

been conducted, limited work has been done concerning the theoretical investigation of the 

multiple shape memory effect of the Nafion. Poor understanding exists on the physics of the 

shape memory properties of the Nafion. A model is desirable to explain the thermo-mechanical 

transaction phenomenon. 

The first goal of this study is to develop a multiphysics model of the MSM-IPMC. New 

physical principles were proposed to explain the multiple shape memory effect of MSM-IPMC. 

A theoretical model of the multiple shape memory effect, based upon thermal stress analysis, 
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was developed. It is based on the assumption that the multiple shape memory effect is caused by 

the thermal stress and each individual Young’s modulus is ‘memorized’ during the previous 

programming process. As the MSM-IPMC was reheated to each temperature, the corresponding 

thermal stress was applied on the MSM-IPMC, and Young’s modulus was recovered, which 

results in the shape recovery of the MSM-IPMC. This model was coupled with the electrical 

actuation model of IPMC, which was reported in our previous work [119], [166]. The 

multiphysics model of the MSM-IPMC was obtained based on the coupled model. Experiments 

of the MSM-IPMC was conducted. The Dynamic Mechanical Analyzer (DMA) was used to test 

the multiple shape memory effect. The electrical actuation and the multiple shape memory effect 

of the MSM-IPMC were demonstrated simultaneously. The simulation results and experimental 

results were compared. This work may be beneficial in exploring the underlying physics of 

multiple shape memory effect. 

The second goal of our study is to characterize the multiple shape memory effect of the 

MSM-IPMC. Three different ionic exchange membranes, which are Nafion, Aquivion and 

GEFC, with three different ions, namely Hydrogen (H+), Lithium (Li+) and Sodium (Na+), which 

are totally nine different kinds of MSM-IPMC samples, were fabricated and used for the test. 

The multiple shape recovery and the reversibility of the samples were qualitatively tested. New 

theories based on enthalpy and free energy were proposed to describe the multiple shape memory 

performance of the samples. The current method can also be used to study the multiple shape 

memory effect of other shape memory polymers. 
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The rest of the paper is organized as follows. Section 2 presents the modeling of the 

MSM-IPMC actuator. Section 3 introduces the experimental verification and results. The results 

were discussed in Section 4. Section 5 is left for the conclusion. 

5.2. Mathematic model 

5.2.1. Modeling of the multiple shape memory effect 

Several works have been reported on the modeling of the shape memory behavior of 

Nafion. One theory is that by modeling the glass transition, the shape memory process can be 

modeled [34]. A temperature-dependent relaxation time or viscosity was assumed in the model. 

During the glass transition, the relaxation time changes significantly. This allows the materials to 

store a temporary shape and recover a permanent shape.  

In this study, I proposed an alternative physics-based principle to explain the shape 

memory behavior. The fundamental concept is that each glass transition is independent of each 

other. Based on previous work, Nafion has multiple shape-memory properties. It can be 

programmed into multiple shapes and controlled by thermal or electric inputs. We assumed that 

the broad glass transition temperature could be regarded as the consecutive distribution of a 

series of glass transitions. Within the range of the broad glass transition temperature, ~55  to 

~140 , Nafion could be programmed with multiple unique shapes and recovered under different 

temperatures. A theoretical model of the multiple shape memory effect of Nafion will be 

developed. It is based on the assumption that the multiple shape memory effect is caused by the 

internal stress where Young’s modulus is ‘memorized’ during the previous programming 

process. As the MSM-IPMC is reheated to each temperature, the internal stress is released on the 
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MSM-IPMC, and Young’s modulus is recovered, which results in the shape recovery of the 

MSM-IPMC. 

Assuming the length, width and thickness of the MSM-IPMC sample are L, W and 2h 

respectively. The internal stress, which is caused by the deformation of polymer chain at the 

glass transition temperature, is released on the MSM-IPMC during each shape recovering 

process. The expression of the internal stress can be expressed as [167] 
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where i refers to each individual shape memory process, N is the total number of the shape 

memory process, T(t) is the temperature, ρn is the density of the polymer, R is the gas constant, 

MC is the molecule weight of the polymer and αi is the extension ratio. The αi can be denoted as  

ii � 	�1                                                      (5.2) 

where εi is the programmed strain of the polymer at each shape memory process. As the MSM-

IPMC is reheated to previously programming temperature, the previously stored Young’s 

modulus is released accordingly. The Young’s modulus can be expressed as 
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where Yeq is the equilibrium Young's modulus, Yi
neg is the nonequilibrium Young’s modulus, a is 

the coefficient related with the shape memory process, Ti is the reference temperature 

corresponds to the programming temperature at each shape memory process. Using the linear 
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beam defection theory, the tip displacement ws of the IPMC beam element relating to the z can 

be denoted as 

� � � �
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where I is the moment of inertia of the IPMC actuator and I = 2/3Wh3. By relating the induced 

stress σ(±h,z,t) to the bending moment, one can obtain 
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Combing Eqs (5.3), (5.4) and (5.5), the tip displacement ws induced by the multiple shape 

memory effect can be expressed as 
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5.2.2. Modeling of the MSM-IPMC 

A physics-based model of the IPMC that combines the resistance change effect of the 

surface electrode and the charge dynamics of the ionic polymer has been previously proposed 

[119]. A microstructure model of the surface electrode was developed. The arrangement of 

particles used in this model was inspired by the primary metallic crystal structures. Based on the 

volume change of the electrode caused by the IPMC beam bending, the variation of the 

resistance of the IPMC was obtained. Furthermore, a physics-based model of the polymer 

membrane was developed. The model is based on the Poisson-Nernst-Planck equations. The 
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Ramo-Shockley theorem was used to calculate the current in the continuous electrodes of the 

IPMC. The finite element approach is used to describe the dynamics of the segmented IPMC 

strip, which considers as the composition of finite elements that can be used to represent a 

mechanical deflection of the IPMC. By combining the model of the surface electrode and the 

polymer membrane, the actuation model of the IPMC was obtained. The deformation wa(L,s) 

caused by the actuation effect under the voltage V(s) can be obtained by solving the following 

equation in the frequency domain 
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where α is the proportional coefficient that relates the charge density at the boundary of polymer 

to the induced stress [27], Y is the Young’s modulus, s is the Laplace variable, D is the diffusion 

constant, F is the Faraday constant, C0 is the constant anion concentration, R is the gas constant,

̂ is the absolute dielectric constant, We is the width of the surface electrode, he is the thickness of 
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the surface electrode, ẑ is the charge number, μ is the mobility of cations, Re is the resistance of 

the surface electrode.  

By solving Eq. (5.16), the deformation wa(L,s) of the IPMC under the voltage can be 

obtained. MATLAB was used to obtain the numerical solution for wa(L,s). Then wa(L,s), which 

is in the frequency domain, was converted to the time domain wa(L,t).  

Based on the ws(L,s) induced by the multiple shape memory effect and wa(L,s) induced 

by the actuation effect, the total tip displacement wt(L,s) of MSM-IPMC can be obtained  

� � � � � �tLwtLwtLw ast ,,, 	� .            (5.8) 

 

5.3. Experimental investigation 

5.3.1. Multiple shape memory effect model validations 

The multiple shape memory effect was tested by Dynamic Mechanical Analysis (DMA). 

An MSM-IPMC sample of 20 mm in length, 4.95 mm in width and 0.18 mm in thickness was 

used for the test. The ionic exchange membrane was Nafion. Figure 5.2 shows the quadruple 

shape memory properties of the MSM-IPMC. The original shape of the sample was considered 

as S0. During the programming period, the sample was stretched under different external stress 

at different temperature ranges, which were the programming temperatures. Three different 

shapes S1, S2 and S3 were programmed at the temperature range 130 ~ 85 , 85 ~ 55  and 55 

~ 20  respectively by applying the stress in the DMA. The deformation of the sample was 

measured in terms of the strain, which can be expressed as 
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 where ε is the strain, ΔL is the relative deformation of the sample, and L is the original length of 

the sample. During the recover process, the sample was reheated. As the temperature increases, 

the sample recovered to the programmed shapes S2’, S1’ and S0’ at corresponding temperatures 

55 , 85  and 130 . It can be seen that the recovered shapes S2’, S1’ and S0’ have a good 

match with the programmed shapes S2, S1 and S0. This indicates that the sample shows a good 

multiple shape memory effect. Quantitative analysis of the shape recovery was also performed in 

the next sections. 

 
Figure 5.2 Quadruple shape memory properties of the MSM-IPMC. 
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The model presented in Section 5.2 was simulated in Matlab. Except for the parameters 

of physical constant and dimensions, parameters such as the nonequilibrium Young’s modulus 

were identified through least-square method. Table 5.1 shows the parameters of the multiple 

shape memory model. It can be found that the nonequilibrium Young’s modulus is relatively 

small compared with the equilibrium Young’s modulus. It can be concluded that the internal 

stress mainly contribute to the shape recover of the actuator. Figure 5.3 shows the comparison 

between the simulation and experimental results of the multiple shape memory effect. The 

simulated and experimental results are in good agreement. The model describes well the multiple 

shape memory process of the MSM-IPMC. One of the reasons that both results match well is that 

the least squares fit was used and the parameters such as molecule weight Mc, nonequilibrium 

Young’s modulus Yi
neg, and shape memory coefficient a were identified based on the 

experimental results. 
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Figure 5.3 Comparison between the simulation and experimental results of the multiple 
shape memory effect. 
 
Table 5.1 Parameters of the multiple shape memory model. 

 

Model parameter Value 

Density of the polymer, ρn 874 kg/m3 

Gas constant, R 8.31 J/mol∙K 

Molecule weight, Mc 3.07×105 g/mol 

Equilibrium Young’s modulus, Yeq
 200 MPa 

Nonequilibrium Young’s modulus, Yi
neg 1.19 kPa 

Shape memory coefficient, a 1.32 
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5.3.2. Validation of the MSM-IPMC model 

To validate the MSM-IPMC model in Equation (5.6), the MSM-IPMC samples were 

tested. Three MSM-IPMC samples with different ionomer membranes, namely Nafion, 

Aquivion, and GEFC, were used. The properties of the membranes are presented in Table 5.2 

[168], [169]. The Nafion contains perfluoro vinyl ether groups terminated with sulfonate groups 

onto a tetrafluoroethylene backbone. The Aquivion is based on the Short Side Chain (SSC) 

copolymer of Tetrafluoroethylene (TFE) and Sulfonyl Fluoride Vinyl Ether (SFVE). The GEFC 

membrane has a perfluorinated backbone and sulfonate side chains similar to Nafion [109], 

[170]. The polymer structures of the membranes are shown in Figure 5.4. It can be noticed that 

the Aquivion has a shorter side chain compared with Nafion and GEFC. The sizes of the MSM-

IPMC samples were measured. The results are presented in Table 5.3. 

Table 5.2 Properties of Nafion, Aquivion and GEFC membranes. 
 

Membrane Manufacturer Structure Equivalent 
weight (g/eq) 

Nafion DuPont Perfluorovinyl ether groups terminated with 
sulfonate groups onto a tetrafluoroethylene 

backbone 

1100 

Aquivion Solvay Short Side Chain (SSC) copolymer of 
Tetrafluoroethylene (TFE) and Sulfonyl 

Fluoride Vinyl Ether (SFVE) 

840 

GEFC GEFC Perfluorinated backbone and sulfonate side 
chains 

1000 
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(a) 

 
(b) 

Figure 5.4 Polymer structures of different membranes: (a) Nafion and GEFC; (b) 
Aquivion. 
 

Table 5.3 Dimensions of the MSM-IPMC membrane samples. 
 

Item W (mm) L (mm) 2h (mm) 

Nafion 10.39 34.87 0.18 

Aquivion 10.01 41.15 0.18 

GEFC 9.92 36.12 0.29 
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Before the test, the samples are all programmed to several shapes. The original shape of 

the sample is assumed S0. The first shape S1 is programmed by folding the strip lengthwise 

around a rod, which was programmed at 85 oC and fixed at 70 oC. The second shape S2 is 

programmed by folding the strip lengthwise around the rod in the opposite direction, where the 

programming temperature is 55 oC and the fixing temperature is 22 oC. Finally, the shape of the 

sample is at S2. Figure 5.5 shows the experimental setup for the shape recovery process. The 

MSM-IPMC sample is submerged in deionized water. A clamp is used to fix one end of the 

sample. A signal generator (SDG1025, Siglent) is used to generate a sinusoid wave, which is 

amplified by a power amplifier (LVC-608, AE Techron, Inc.). Through the clamp contacts, a 

voltage input of 2 V amplitude and 1 Hz frequency is applied to the sample. An immersion 

heater (3656K169, McMaster-Carr) is used to heat the water from room temperature (22 oC) to 

90 oC. A circuit is developed based on a thermal resistor (PRTF-11-2-100-1/8-6-E, Omega®) to 

measure the water temperature. A laser sensor (optoNCDT-1401, Micro-Epsilon) is used to 

measure the displacement of the sample. The voltage, current, displacement and temperature 

were measured simultaneously through the DAQ (NI SCB-68, National Instruments) and were 

recorded using the LabVIEW 8 Software.  
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Figure 5.5 Experimental set up of the MSM-IPMC test. 
 

Figure 5.6 shows the experimental results of the GEFC sample. It can be seen that in 

general, as the temperature increases, the voltage decreases and the current increases. Based on 

the results, it can be concluded that the electrical impedance of the MSM-IPMC decreases as the 

temperature of current study increases. This property can be potentially used for the thermal 

feedback control. Similar results were also found in our previous study [139]. According to the 

displacement result, the sample shows the multiple shape memory effect and the electrical 

actuation effect simultaneously. The general bending of the sample resulted from the multiple 

shape memory effect. As the temperature increases initially, the sample recovered from S2 to 

S1’, where the sample bent toward one side. With the temperature continuing to increase, the 

sample finally recovered to its original shape S0’, where the sample bent toward another side. 

Meanwhile, the sample has an oscillation motion induced by the electrical actuation. 
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Figure 5.6 Measured displacement, temperature, current and voltage of GEFC sample. 
 

Figure 5.7 shows the comparison between the experimental results and theoretical results 

of the displacements of the MSM-IPMCs, which are based on Nafion, Aquivion and GEFC 

membranes in Li+-form. The results show that the model describes well the actual displacement 

of the different MSM-IPMCs. In general, all three samples demonstrated the capabilities of 

multiple shape memory effect. It was also found that the sample of Aquivion has the largest 

displacement, which is ~ 8 mm; the sample of Nafion and GEFC have relatively small 

displacements, which are ~ 2 mm and ~ 3 mm respectively. The Aquivion membrane has a larger 

displacement than the other two samples. One of the reasons that cause the difference between 

the sample displacements is the length of the samples, where the Aquivion is longer than the 
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Nafion and the GEFC. Another possible explanation is that Nafion and GEFC have a 

perfluorovinyl ether side group and a sulfonate end group. Aquivion has the sulfonyl fluoride 

vinyl ether as the side group, whose molecule chain is shorter. This short side chain enables the 

polymer to have a lower equivalent weight, which potentially causes a higher conductivity [168]. 

Furthermore, the Ion Exchange Capacity (IEC) of Aquivion is higher than the other two 

membranes, as shown in Table 5.4. This also indicates the potential that the Aquivion has better 

electromechanical performance than Nafion and GEFC. 

 

Table 5.4 The ion exchange capacity of each membrane. 
 

Membrane Ion Exchange Capacity (meg/g) 

Nafion 0.97 (±0.01) [170] 

Aquivion 1.25 (±0.01) [168] 

GEFC 0.95 (±0.01) [170] 
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(a) 

 
(b) 
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(c) 

Figure 5.7 Comparison of theoretical and experimental results of different membrane 
based IPMCs: (a) Nafion; (b) Aquivion; (c) GEFC. 
 

5.3.3. Glass transition 

The glass transitions of different membranes with different ions were studied. In our 

study, we used three different ionic exchange membranes, which were Nafion, Aquivion and 

GEFC. Each membrane has three different ion forms, which were hydrogen (H+), Lithium (Li+) 

and Sodium (Na+). Nine different samples in total were utilized for the test. By soaking the 

membranes in hydrogen chloride (HCl), Lithium chloride (LiCl) and Sodium chloride (NaCl) for 

the ionic exchange, the membranes in H+ form, Li+ form and Na+ form were obtained 

respectively. Before the test, the samples were annealed in an oven at 150 oC for 4 hours to 

remove the residual stress/strain from the polymer processing step. The glass transition range of 

each sample is first measured separately. The mechanical properties of the samples were tested 

in DMA. The tangent of δ which is the ratio between the loss modulus E” and the storage 
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modulus E’ , is obtained. By measuring the start and end temperature of the the tangent of δ 

curve peak, the broad glass transition can be derived. The details can be found in [18].  

The glass transition ranges of the samples were obtained. Based on the experimental 

results, it was found that the membranes with the same ions have similar glass transition range. 

Figure 5.8 shows the broad glass transition range of the samples in different ions. From the view 

of the ions, the membranes in H+-form have the shortest glass transition range, which is from ~ 

50 oC to ~ 90 oC; the glass transition range of the membranes in Na+-form is the longest, which is 

from ~ 55 oC to ~ 160 oC; the Li+-form membranes are between them, which is from ~ 55 oC to ~ 

140 oC. It was also found that the H+-form membranes have the lowest second glass transition 

temperature. The second glass transition temperature of the Na+-form membrane is the highest. 

The Li+-form membranes are in the middle. To explain this, the enthalpy and free energy of each 

ion were considered. This is analyzed in the discussion section. 

 

 
Figure 5.8 First and second glass transition ranges of membranes with different cations. 
 



www.manaraa.com

117 
 

 

5.3.4. Shape recovery 

The multiple shape memory effect of the samples was tested. Based on the obtained glass 

transition range of different membranes (Figure 5.8), the triple shape memory effect of the H+-

form IPMCs was tested, the Li+-form MSM-IPMCs were tested with the quadruple shape 

memory effect, and the quintuple shape memory effect of the Na+-form MSM-IPMCs was also 

tested. Figure 5.9 shows the quintuple shape memory process of the Na+-form MSM-GEFC. The 

results show that the sample has a recoverable multiple shape memory effect. To quantitively 

analyze the multiple shape memory effect, the shape recovery rate of each sample during the 

shape memory process was calculated. Assuming the sample recovers from shape y to shape x, 

The shape recover ratio Rf,x of shape x can be calculated by the following equation 

xy

xy
xf SS

SSR
�
�

$�
'%100,              

(5.10) 

where Sx, Sy are the strain at x and y shape during the shape programming process, Sx’ is the 

strain after recovery.  
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Figure 5.9 Quintuple shape memory process of the Na+-form GEFC. 
 

Figure 5.10 shows the shape recovery of different samples. Based on figure 5.10 (a), the 

shape recovery of the H+-form MSM-IPMCs was within the range of 60 ~ 80 %. The triple shape 

memory programming temperatures of the H+-form samples were ~45 oC and ~75 oC 

respectively. According to figure 5.10 (b), the shape recovery of the Li+-form MSM-IPMCs was 

from 70 % to 90 %. The quadruple shapes of the Li+-form samples were programmed at ~45 oC, 

~ 80 oC and ~115 oC respectively. As shown in figure 5.10 (c), the shape recovery of the Na+-

form MSM-IPMCs was within the scope of 80 % to 100 %. The quintuple shape memory effect 

of the Na+-form samples was demonstrated with the programming temperatures of ~45 oC, ~ 70 
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oC, ~ 95 oC and ~125 oC respectively. Based on the results, it was found that the Na+-form 

membrane based IPMCs have the highest shape recovery, the shape recovery of the Li+-form 

membrane based IPMCs is in the middle and the H+-form membrane based IPMCs have the 

lowest shape recovery. Furthermore, it is interesting the note that initially, the shape recovery 

increases as the temperature increases. The shape recovery reaches the peak when the 

temperature is approximately 80 oC. As the temperature continues to increase, the shape recovery 

decreases. To explain this, a detailed discussion is presented in the discussion section. 

 
(a) 
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(b) 

 
(c) 

Figure 5.10 Shape recovery of different samples: (a) H+-form membrane based IPMCs; (b) 
Li+-form membrane based IPMCs; (c) Na+-form membrane based IPMCs. 
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5.3.5. Reversibility 

In previous work, it was found that the multiple shape memory effect of the Nafion was 

reversible [18]. However, limited work was done regarding the reversibility of the membranes. 

In our study, the reversibility of all the nine samples was tested. The DMA was used for the test. 

Figure 5.11 shows the reversible test of the Na+-form Aquivion. During the programming 

process, the sample with its original shape S0, was programmed at the temperature of 95 oC for 

shape S1 and 60 oC for shape S2. Then during the recovery process, the sample shows its 

reversibility between S0, S1 and S2 based on the temperature variation. The recovery sequence is 

from 1 to 9. It can be seen that the sample has good reversibility.   

 
Figure 5.11 Multiple shape memory reverse process of Na+-form Aquivion. 
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Figure 5.12 shows the shape recovery versus the recover sequence of different samples. 

The shape recovery was calculated based on Equation (5.9). It can be found that initially, all the 

samples have a maximum shape recovery. As the samples continue to recover to different 

shapes, the shape recovery decreases. In general, the Na+-form membrane based IPMCs have the 

highest shape recovery, which starts at ~ 95 % and ends at ~ 75 %; the H+-form membrane based 

IPMCs have the lowest shape recovery. The shape recovery range is from ~ 90 % to ~ 50 %; the 

shape recovery of the Li+-form membrane based IPMCs was between them, which is from ~ 95 

% to ~ 75 %. Based on figure 5.12 (a), it was also noticed that the shape recovery has a 

significant decrease at recover sequence 6. One possible explanation is that the sample was 

reheated to recover to S2 at ~ 95 oC at sequence 5. Part of the shape memory was removed 

during the process, which results in the low shape recovery at recover sequence 6.  

  
(a) 
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(b) 

  
(c) 

Figure 5.12 Reversibility of different samples: (a) H+-form membrane based IPMCs; (b) 
Li+-form membrane based IPMCs; (c) Na+-form membrane based IPMCs. 
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5.4. Discussion 

5.4.1. Ionic effects on the membrane 

The ionic membranes used in our study are commercial thermoplastic polymers with 

mobile ions and immobile anions fixed on the backbones. It can perform as the actuator and 

sensor when electrodes are chemically plated on the surface. The mobile cations migrate to the 

boundary when an electrical field is applied across the thickness direction of the membrane. The 

accumulation of the ions at the boundary causes the deformation of the membrane, along with 

the surface electrodes. When a mechanical deformation is applied on the membrane, the 

imbalance of the internal ionic concentration results in the migration of the cations inside the 

membrane. From a macro perspective, a detectable voltage is generated at the surface of the 

membrane. To sum up, the transport of the free cations cause the electrical actuation effect.  

Meanwhile, the multiple shape memory effect results from the molecule chain motion of 

the membrane. The ionic exchange membraned used in this paper typically have two kinds of 

different glass transitions. The first glass transition corresponds to the short-range segmental 

motions within a static electrostatic network. The multiple shape memory effect takes places in 

this range. The second glass transition corresponds to the long-range molecular mobility due to 

the destabilization of the electrostatic network. The temperature range of the first and second 

glass transition is shown in Figure 5.8. It was noticed that the H+-form membranes have the 

lowest glass transition temperature. The glass transition temperature of the Na+-form membrane 

is the highest. The Li+-form membranes are in the middle and are relatively close to the Na+-

form membranes. In our study, we noticed that the membranes with different ions, namely H+, 
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Li+, Na+, have different glass transition ranges. To explain this phenomenon, a theory was 

proposed. 

Figure 5.13 shows the enthalpy (ΔH) and the free energy (ΔG) of different ions [171]. 

The H+ has the highest enthalpy and the free energy which are ~ 1500 kJ/mol. The enthalpy and 

the free energy of Li+ and Na+ are similar, where the Li+ is ~ 685 kJ/mol and the Na+ is ~ 500 

kJ/mol. The Li+ is relatively higher than the Na+. When the membrane was heated, the enthalpy 

and the free energy of the membrane increased. The enthalpy and free energy ions contribute to 

the total enthalpy and the free energy of the membrane. As the enthalpy and the free energy 

increase, the electrostatic network of the membranes starts to destabilize when the temperature is 

above the first glass transition range. Thus, the membranes with H+ ions, whose enthalpy and 

free energy is the highest, are the first to have the destabilized electrostatic network and have the 

lowest glass transition temperatures compared with the other two ionic form membranes. The 

glass transition temperatures of Li+-form and Na+-form membranes are higher, where the Na+-

form membrane is relatively higher than the Li+-form membrane. This has a good agreement 

with the enthalpy and free energy of Li+ and Na+ ions, where the Li+ is relatively higher than the 

Na+. This can also be used to explain that the shape recovery of H+-form membrane is lower than 

the other two membranes, which are shown in Figure 5.13. 
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Figure 5.13 Enthalpy and free energy of different ions. 
 

5.4.2. Shape memory distribution 

The multiple shape memory effects of the membrane stem from its broad glass transition 

ranges. According to previous work, the broad transition can be viewed as the collective 

contribution of an infinite number of transitions. Each of the transitions corresponds to the sharp 

transition temperatures continuously distributed across the broad transition [18]. Thus, the 

membrane can be seen as the sum of numerous molecule segments. Each molecule segment has 

its individual sharp transition, which contributes to the shape memory effect at its sharp 

transition temperature. The incorporation of the segments demonstrates the multiple shape 

memory effect of the membrane.  
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The results of the shape recovery shown in figure 5.10 may shed some light on the 

distribution of the sharp transition temperatures of the molecule segments. It can be seen from 

the figure that the shape recovery reaches its peak at the programming temperature of ~ 80 oC. 

The shape recovery decreases when the programming temperature is away from ~ 80 oC towards 

both sides. The programming temperature can be also seen as the transition temperature. For 

example, the shape memory effect at ~ 80 oC results from the shape recovery of the molecule 

segments with the shape transition temperature of ~ 80 oC. Thus, it can be considered that the 

sharp transition temperature of the molecule segments mainly located at ~ 80 oC. With the sharp 

transition temperature being directed away from ~ 80 oC towards both sides, the amount of the 

molecule segments at the sharp transition temperature decreases. This method can be also used to 

study the shape memory effects of other ionic membranes with broad glass transitions.  

5.5. Conclusion 

In this study, we theoretically modeled and experimentally investigated the MSM-IPMC. 

A theoretical model was proposed to describe the multiple shape memory effect of the MSM-

IPMC. Experiments were performed. The multiple shape memory properties of the MSM-IPMC 

was successfully demonstrated. By comparing the simulation results of the model and the 

experimental results, it is found that the model can well describe the shape memory effect. This 

work is useful for understanding the physical principles of the multiple shape memory effect of 

MSM-IPMC. 

The multiple shape memory effect of different membranes with different ions were 

tested. The results of glass transition temperature, shape recovery and reversibility were 

presented. All the samples show good multiple shape memory effect and reversibility. It was 
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found that the membranes with the H+ ions have the lowest glass transition temperature and 

shape recovery. The glass transition temperature and the shape recovery of the membranes with 

Na+ ions are the highest. The membranes with the Li+ ions are between them. A theory based on 

the enthalpy and free energy is proposed to explain this phenomenon. Furthermore, the shape 

recovery can be used to study the distribution of the sharp transition temperature of the 

membranes. The method is also beneficial for the study of other shape memory polymers. 

With the electro-mechanical and thermo-mechanical actuation, the MSM-IPMC actuator 

is capable of deformability and maneuverability of multiple degrees of freedom - the complex 

twisting, bending, and oscillating motions – with thermal and electrical control simultaneously 

and separately [139]. In the future, a biomimetic soft robotic system will be developed based on 

the MSM-IPMC actuator. 
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Chapter 6. Development of a robotic fish actuated by MSM-IPMC 

In this chapter, a preliminary work was published in the International Journal of 

Intelligent Robotics and Applications. The authors, in order of appearance on the article, are 

Tyler Stalbaum, Taeseon Hwang, Sarah Trabia, Qi Shen, Robert Hunt, Zakai Olsen, and Kwang 

J. Kim. This paper focuses on the development of an IPMC actuated soft fin that generates a 

travelling wave. This chapter is partially reprinted from “Tyler Stalbaum, Taeseon Hwang, Sarah 

Trabia, Qi Shen, Robert Hunt, Zakai Olsen, and Kwang J. Kim. Bioinspired traveling wave 

generation in soft-robotics using ionic polymer-metal composites. International Journal of 

Intelligent Robotics and Applications 1, no. 2 (2017): 167-179.” with the permission of Springer 

Publishing.  The readers are referred to this article for a more in-depth description of the IPMC 

traveling wave fin fabrication. 

6.1. Introduction 

The IPMC has the advantages of large deformation, resilience and low actuation voltage 

[25], [29]. The water molecules contribute to the migration of the cations under the applied 

electric field, which causes the bending deformation of the IPMC actuator. Meanwhile, when the 

IPMC is mechanically deformed, the cations move along with the water molecules due to the 

imbalance of the electrical network within the polymer of the IPMC sensor. As a result, a 

detectable voltage is generated on the surface of the IPMC. Furthermore, the IPMC can be scaled 

down to less than 1 mm. Thus the IPMC is very suitable to work in water as micro actuators and 

sensors. 

Scientists and engineers all over the world have developed many robotic systems based 

on the IPMC actuator. Biomimetic underwater robots such as robotic fish, robotic snake, and 
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robotic jellyfish have been developed [13], [164], [172]–[174]. Takagi et. al developed a rajiform 

swimming robot that mimics the swimming mode of ray fish [175]. Sixteen IPMCs were used for 

the two fins and on-board electrical devices were designed. The speed of the single fin was 

measured. Chen et. al developed a biomimetic robotic manta ray actuated by its pectoral fins 

[176]. The fins were designed based on the shape of real manta ray fin. Four IPMC strips with 

different sizes were attached to each fin for the actuation. Later Chen and his group members 

presented an IPMC actuated underwater robot that mimics the swimming motion of the manta 

ray [177]. The robot consists of two pectoral fins and each fin has an IPMC actuator of the 

polygonal shape and a passive soft film. The on-board control unit was developed. The robot was 

tested and the speed and power consumption was measured. A bioinspired bending/twisting fin 

enabled by IPMC was developed by Palmre et. al [113]. The IPMC actuators were integrated 

into a soft material and the fin performed complex deformation such as bending and twisting. 

Joel et. al presented a monolithic IPMC fin that is capable of complex deformation. The surface 

electrodes were patterned through the surface machining process [178]. Complex locomotion can 

be achieved by selectively actuating different surface regions. 

Recently, Nafion, which is the intermediate layer of the IPMC, is reported to have the 

multiple shape memory effect [18]. It has a broad glass transition temperature, from ~ 55  to ~ 

130  [33]. Multiple shapes can be programmed at random temperatures within the glass 

transition temperature. Upon reheating to those temperatures, the corresponding programmed 

shapes can be recovered. The crystalline segments, which work as physical crosslinks, hold the 

programmed shapes during each glass transition. In our previous work, we proposed a soft 

Multiple Shape Memory Ionic Polymer-Metal Composite (MSM-IPMC) actuator with multiple 



www.manaraa.com

131 
 

 

degrees of freedom. By controlling two external inputs – electrical input and thermal input – the 

MSM-IPMC is able to perform the complex twisting, bending, and oscillating motions that are 

frequently observed in nature-made systems [139]. Potentially, it could be applied to medical 

devices and biomimetic robotics. To date, most of the robots reported before actuated by IPMCs 

is based on the electrical actuation effect. 

In this work, I presented a biomimetic underwater robot, that was actuated by the MSM-

IPMC. Compared with the previous robot, the robot in our study can not only propel itself based 

on the electrical actuation effect but also change its swimming modes based on the multiple 

shape memory effect. The design of the robot was inspired by the pectoral fish swimming 

modes, such as stingrays, knifefish and cuttlefish. Compared with caudal fish swimming modes, 

such as eel, mackerel and tuna, the pectoral fish based on the wave-like propulsion has the 

advantage of great maneuverability and good propulsive efficiency at low speeds [179]–[181]. 

The robot was actuated by two fins. Each fin consisted of six MSM-IPMC samples. A travelling 

wave was generated on the fin by actuating the MSM-IPMCs separately. Experiments were 

performed to test the robot. The displacement and the blocking force of the fin were measured. A 

flow channel with a force measurement system was implemented for the test of the robot. The 

thrusts under different frequencies and traveling wave numbers were recorded. The multiple 

shape memory effect was successfully demonstrated on the robot. The robot was capable of 

switching between Gymnotiform and Mobuliform swimming modes, which gives the robot high 

deformability, maneuverability and agility. 

The organization of this chapter is as follows. Section 2 presents the materials and 

methods of our study. Section 3 shows the results. Section 4 concluded the study of this chapter. 
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6.2. Materials and Methods 

6.2.1. Fabrication of MSM-IPMCs 

The MSM-IPMCs used for this project were all fabricated in-house. The process can be 

broken down into five major steps: roughening the surface, cleaning process to remove 

impurities, impregnation of the platinum, primary plating, and secondary plating. The surface 

roughening step evens out the thickness of the Nafion membrane, while increasing the surface 

area for the platinum to impregnate. DuPont™ Nafion membranes were used. The membrane is 

cleaned with two baths: 3% hydrogen peroxide (H2O2) for removing organic impurities, and 1 M 

of sulfuric acid (H2SO4) for removing metallic impurities. Two deionized water (DI water) baths 

ensure that the membranes have been completely rinsed. The impregnation step uses a platinum 

salt solution (Pt(NH3)4Cl2•H2O) and the membrane is left in the solution for 3.5 hours, where it 

is flipped every half hour to ensure even impregnation. The primary plating process is a sodium 

borohydride bath, which plates the platinum onto the membrane. This is repeated three times 

with a cleaning process following each. The secondary plating process is a platinum solution 

bath and hydroxylamine hydrochloride (H2NOH•HCl) and hydrazine (NH2NH2•H2O) are added 

every half hour. The electrode surface resistance is measured following each secondary plating, 

where the conductivity is considered high enough for good performance at resistance values of 

less than 10 ohms. The MSM-IPMC is then placed in a LiCl bath for 24 hours to reintroduce 

mobile cations, in this case Li+ ions. The final plated MSM-IPMCs were of 0.36 mm thickness, 

16.15 mm length and 2.65 mm width. A complete procedure is presented by Kim et al.[182].  
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6.2.2. Biomimetic underwater robot prototype 

Figure 6.1 shows the robot prototype. The robot consists of three parts, which are the 

rigid robot shell, soft fins and off-board control circuit. The rigid body was designed in 

Solidworks and printed in a 3D printer (Form 2). Two soft fins were attached to the rigid body. 

From the biology view, many fish use undulating fins for auxiliary propulsions, as well as for 

stabilization and maneuvering. In median fins, each fin ray usually has a set of six muscles, 

which enable the fish to have the capability of locomotion in two degrees of freedom [179]. Six 

MSM-IPMC samples were used for each fin and were arranged in an array. Twelve MSM-IPMC 

samples in total were used. In Figure 6.1 the sequences of the MSM-IPMCs in the fin were 

labeled. A flexible substrate was adhered to create a surface along the structure. Based on this 

structure, lifting and drag forces can be generated when the waveform is excuted. Silver pastes 

were pasted between the MSM-IPMCs and the electrodes to increase the conductivity.  

 
Figure 6.1 Prototype of the biomimetic robot. 
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An off-board control circuit was developed. Figure 6.2 shows the schematic of the 

control circuit. The Arduino MEGA microcontroller (ATmega2560) was used. By adjusting the 

potentiometer, the microcontroller can read the input signal and determine the corresponding 

output frequency. Six dual motor drivers (DRV8835 Dual Motor Driver Carrier, ROHM) were 

used to actuate the MSM-IPMC samples. The actuation voltages were supplied to the MSM-

IPMCs through the flexible wires (Calmont). Each MSM-IPMC was connected by two wires. 

Twenty-four wires were connected to the robot in total. Through the mictrocontroller, the robot 

can perform the travelling wave on the fins. Meanwhile, by controlling the bios voltages on the 

IPMCs, twisting motions were generated on the fin. The control codes for the travelling wave 

motion and twisting motion are provided in Appendix E. 

 
Figure 6.2 Schematic of the control circuit. 
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6.2.3. Displacement and blocking force 

A sinusoid wave input voltage is utilized for driving the individual MSM-IPMCs. The 

control scheme is coded into the microcontroller for generating a traveling wave motion in an 

array of MSM-IPMCs. The input voltage to each MSM-IPMC can be expressed by: 

� �
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12sin
N
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&)                 (6.1) 

where A is the amplitude of the input voltage, ω is the angular frequency and ω = 2πf, f is the 

operating frequency, m is the number of waves, N = 6 is the total number of MSM-IPMCs in the 

fin, i is the order of the MSM-IPMC and i = 1, 2, …, N. The phase delay per sample is given as 

the fraction, � � � �112 	� Nim& , where the denominator can be adjusted for a different total 

phase shift between first and last MSM-IPMCs. 

Performance testing and visualization experiments were done using the developed 

hardware with an external power supply (Agilent Technologies N5771A DC Power Supply) for 

running the motor drivers. The input voltage of the MSM-IPMCs was 5 V and the operating 

frequency was 0.5 Hz. Performance testing was carried out with a traveling wave microcontroller 

program to mimic similar motion to those used in biomimetic underwater robot design. Testing 

was performed in DI water. 

MATLAB was used to track the position of the MSM-IPMC array. A specified mark is 

identified by being of regular shape, circular or rectangular, and of pronounced color. In this case 

a rectangular black marker is being tracked, that is, the tip of the individual MSM-IPMCs. The 

MATLAB code cross-references the previous frame to the new frame identifying the same 

marker. It uses an array of pixels to compare the array or matrix values between the two frames. 
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Additionally, a signal-to-noise cross-correlation between frames 1 and 2 are being used. Signal-

to-noise ratio works best when the mark is half the size of the array of pixels and is dependent on 

initial frame signal-to-noise. Tracking of the rectangular shape and its centroid is being used. The 

centroid is obtained by computing a threshold, converting to binary and from there on calculated 

with such values.  

The video is entered into the MATLAB code and decomposed into individual frames. 

The marker on the MSM-IPMC is chosen and frame-by-frame, the MATLAB program predicts 

the position of the marker in the next frame. This continues for all frames. The data is exported 

into excel and pixel-to-length and frame-to-time conversions are used to obtain correct position 

and time [120]. An offset is applied to the array by setting the initial positions of the individual 

MSM-IPMC’s to zero. This is calculated by subtracting all values of an MSM-IPMC’s vertical 

data by its initial value. The initial offset is due to two parts: (1) the offset in the selected zero 

position for the video analysis, and (2) the discrepancy between individual actuator performance 

and static resting positions. The data is then plotted, position versus time.  

6.2.4. Thrust  

The thrust force of the biomimetic underwater robot was measured. A horizontal low-

velocity towing system was implemented.  Figure 6.3 shows the illustration of the experimental 

apparatus. Driven by the motor, the carriage can move horizontally on the guide rail with the 

peak speed of 53.3 mm/s. The water tank was set under the guide rail and was filled with DI 

water. The robot and its affiliated components are fixed vertically under the towing system. A 

load cell with the measuring range of 1 N and a sensitivity of 0.01 N in the axial direction was 

mounted under the carriage. A 3D printed shaft was used to connect the robot and the load cell. 
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Based on the lever principle, the force on the robot was amplified by 70 times when it was 

transferred to the load cell. The robot was submerged under the water and was located at mid-

depth in the tank. It has sufficient space in the tank to move without being affected by the free 

surface, boundaries on both sides and bottom of the tank. The control circuit was mounted above 

the water.  Figure 6.3 shows the snapshot of the force measurement system. 

The drag force of the robot was measured first. The robot was towed under the system 

with different speeds varying from 5 mm/s to 53 mm/s. Different drag forces of the robot were 

measured for different towing speeds. The force measured by the load cell is the drag force of the 

robot. The drag force can be expressed as [183]  

2

2
1 vCAF dcwd ��               (6.2) 

where ρw is the water density, Ac is the cross-section reference area of the robot, Cd is the form 

force coefficient, v is the towing velocity of the robot, Ac can be obtained from the 3D model of 

the robot, Cd is relevant to the robot shape and the Reynolds number and needs to be identified.  

Then the thrust was measured. As shown in figure 6.4, the thrust force of the robot was 

measured at static state. The robot was actuated at different frequencies and wave numbers. The 

load cell measured the thrust force generated by the robot. LabVIEW was used to record the 

force signal from the load cell. 

For comparison, an alternate method that measures the thrust of the robot was presented. 

Figure 6.5 shows the second method, where the robotic fish was towed at the prescribed speed. 

The force measured by the load cell is the resultant force Fa = Fd - Ft applied on the robot, where 

the thrust force Ft and the drag force Fd acting on the robot simultaneously. Based on the 
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previously measured drag force Fd at the towing speed, the thrust force Ft can be obtained by Ft 

= Fd – Fa.  

 
Figure 6.3 Snapshot of the thrust measurement system. 
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Figure 6.4 Illustration of the robot force measurement at static state. 
 

 
Figure 6.5 Illustration of the robot force measurement at prescribed speed. 
 

6.2.5. Multiple shape memory effect 

The multiple shape memory effect enables the MSM-IPMC to have a stable deformation. 

This deformation shape is based on the programming shape and can be controlled through the 
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thermal input. In our study, the multiple shape memory effect was demonstrated on the 

biomimetic underwater robot, which allows the robot to have more maneuverability and agility. 

Figure 6.5 shows the illustration of the robot with different pectoral swimming modes. Based on 

the multiple shape memory effect, the robot can switch the swimming modes between the 

mobuliform and the gymnotiform, which was shown in figure 6.5 (a) and figure 6.5 (b) 

separately. The robot is capable of forward and backward motion based on the traveling waves 

generated on the fins.  

 
                  (a)                                                                                         (b) 

Figure 6.6 Biomimetic underwater robot with different pectoral swimming modes: (a) 
Mobuliform; (b) Gymnotiform. 
 

Furthermore, by controlling the MSM-IPMCs on the fins separately, the fins on the robot 

can perform twisting motions. Figure 6.6 shows the twisting fins of the robot with different 

swimming modes. Combing with the twisting motion of the fins, the swimming modes of 

mobulifrom allows the robot to have the motion in the pitch direction, while the robot in the 

gymnotiform can have the 2 degrees of the freedom movement in the horizontal direction. 
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                     (a)                                                                                      (b) 

Figure 6.7 Twisting fins of the biomimetic underwater robot with different pectoral 
swimming modes: (a) Mobuliform; (b) Gymnotiform. 
 

6.3. Results 

The deformation of each MSM-IPMC actuator in the robot’s fin was measured. The 

experimental results were processed in MATLAB. Sinusoid electrical signals with phases 

differences were applied to each MSM-IPMC separately. Figure 6.7 shows the displacement of 

the traveling wave of one fin with A = 5 V, m = 1 and frequency f = 1 Hz, 0.5 Hz, 0.25 Hz. In 

general, the MSM-IPMCs have the sinusoid displacement with the amplitude from 2 mm to 6 

mm. It can be noted that as the frequency decreases, the amplitudes of the MSM-IPMCs 

increases. 
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(a) 

 
 (b) 
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(c) 

Figure 6.8 Deformation of the MSM-IPMCs in the soft fin at different frequencies: (a) 1 
Hz; (b) 0.5 Hz; (c) 0.25 Hz. 
 

The blocking force of the fin was measured using the load cell. Figure 6.8 shows the 

blocking forces of different MSM-IPMCs in the fin. The MSM-IPMCs were actuated under the 

condition of A = 5 V, m = 1 and frequency f = 0.5 Hz. The blocking force of IPMC 1, IPMC 3 

and IPMC 6 were presented respectively. Based on the results, a sinusoid variation of blocking 

force was noticed. The peak to peak force range of different MSM-IPMCs varies from 8 mN 

to12 mN. 
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(a) 

 
(b) 
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(c) 

Figure 6.9 Blocking force of the MSM-IPMCs in the soft fin: (a) IPMC 1; (b) IPMC 3; (c) 
IPMC 6. 
 

The drag force of the robot was measured. The robot was towed under the system with 

the speed varying from 5 mm/s to 53 mm/s. The MSM-IPMCs were not activated. Based on 

equation (6.2), the towing velocity v and the measured drag force Fd, the form force coefficient 

Cd was derived using the least-square method. Table 6.1 shows the parameters of the towing 

experiment. Figure 6.10 shows the experimental data and the theoretical prediction based on the 

identified Cd. It can be found that both the experimental and simulation results match well. 

 

 

 



www.manaraa.com

146 
 

 

Table 6.1 Parameters of the towing experiment. 
 

Parameter (Unit) Value 

Ac (m2) 9.28×10-5 

Cd 0.0295 

ρw (kg/m3) 1000 

 

 
Figure 6.10 Experimental and theoretical results of the towing experiments. 
 

The thrust force of the robot was measured under the towing system. The robot was 

activated at frequencies from 0.25 Hz to 2.5 Hz and wave numbers from 0.5 to 1.5. Figure 6.10 

shows the thrust force of the robot at static state. It is noticed that the thrust force at wave 
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number m = 1 is higher than the thrust force at other wave numbers. Initially, the thrust force 

increases as the actuation frequency increase. The thrust reaches the peak at the frequency of 0.5 

Hz. With the frequency continuing to increase, the thrust force decreases. The peak thrust force 

of the robot under static state is ~ 12 mN at the frequency of 0.5 Hz and wave number of 1.  

  
Figure 6.11 Experimental results of thrust force at static state. 

 

Figure 6.12 shows the thrust force of the robot at prescribed velocity U = 32 mm/s. 

Compared with the thrust force at static state, a similar trend was found for both results. It can be 

also found that the thrust measured at static state is approximately 6% higher than the thrust at 

the prescribed velocity. The peak thrust force under the prescribed velocity is ~ 11 mN at the 

frequency of 0.5 Hz and wave number of 1, which is the same condition of the static state. One 

possible explanation of the thrust force at static state being higher than that at prescribed velocity 
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is that the traveling wave was generated when the robot was towed, which caused additional drag 

force on the robot. As a result, the thrust force was reduced due to the additional force. 

 
Figure 6.12 Experimental results of thrust force at prescribed towing velocity. 
 

By controlling the MSM-IPMCs separately, the twisting deformation of the soft fin was 

achieved. Meanwhile, to achieve the propulsion, travelling waves were generated on the fins. 

Bias voltages were applied to the MSM-IPMCs. Based on Equation (6.1), the input voltages of 

the MSM-IPMCs from 1 to N can be rewritten as 

� � i
N

imtAVi 6.01.2
1

12sin �	��
�

��
�

	
�

	�
&)            (6.3) 

where A is the amplitude of the voltage and A = 2.5 V. The rest are the same as before. Thus, 

forward or backward thrust can be obtained along the direction of the soft fins. Figure 6.13 
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shows the deformation of the soft fin. A maximum 30o of twisting was obtained. The 

displacement of each individual MSM-IPMC was measured using the image analysis. Figure 

6.14 shows the displacements of the MSM-IPMCs during the twisting deformation. It can be 

seen that each MSM-IPMC has a general bending and oscillating motion with phase delay, 

which combined together to result in the twisting  deformation of the soft fin with travelling 

wave on it. 

 
Figure 6.13 Twisting deformation of the soft fin. 
 

 
Figure 6.14 Displacement of the MSM-IPMCs during the twisting deformation. 
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The multiple shape memory effect was successfully demonstrated on the robot. To 

program the shape, the fins of the robot were fixed by the external components, which were 3D 

printed. Then the fixed fins were heated at 75 oC for 15 minutes and cooled at 60 oC for 5 

minutes in water. Upon removing the external components, the shape of the fins was 

programmed. Two swimming mode shapes, which are the Mobuliform swimming mode and 

Gymnotiform swimming mode, were programmed separately. Figure 6.15 shows the biomimetic 

underwater robot with different programmed shapes. Figure 6.15 (a) shows the robot with 

Mobuliform swimming mode and Figure 6.15 (b) shows the Gymnotiform swimming mode of 

the robot. Combing with the twisting deformation of its soft fins, the robot has the potential 

capability of multiple-degrees-of-freedom locomotion in the water. 
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(a) 

 
(b) 

Figure 6.15 Programmed biomimetic underwater robot with different swimming modes: 
(a) Mobuliform; (b) Gymnotiform. 
 

6.4. Conclusion 

In this chapter, we presented a biomimetic underwater robot that is based on the MSM-

MSM-IPMC. Inspired by the pectoral fish swimming modes, the robot was actuated by two soft 

fins. MSM- IPMCs were used as the skeleton on the fins. Travelling waves were generated on 
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the fins based on the electrical actuation effect of the MSM-IPMCs. The displacement and 

blocking force of the MSM-IPMCs on the fins were measured. A flow channel with force 

measurement system was implemented to test the robot. The drag force and thrust force of the 

robot were measured under the system. The maximum thrust force of 12 mN was measured at 

the frequency of 0.5 Hz and wave number of 1. The fins of robot show twisting deformation of 

30o. Multiple shape memory effect was successfully demonstrated on the robot. The robot is 

capable of switching between the mobuliform and gymnotiform swimming modes based on the 

multiple shape memory effect, which give the robot various maneuvering capabilities.  

In the current study, due to the restriction of the external wires, the robot was not able to 

swim freely in the water. Thus, the robot did not demonstrate its capability of motion in the 2 

degrees of freedom horizontal and pitch direction. In the future, we will develop a robot which 

has the on-board control circuit and can swim freely in the water. Then the robot can show the 

electrical actuation and multiple shape memory effect simultaneously. 
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Chapter 7. Conclusion 

In our work, we theoretically and experimentally investigated the MSM-IPMC. The 

electrical actuation and multiple shape memory effect of the MSM-IPMC actuators were studied 

separately. A physical model that considers the surface electrodes variation during the 

deformation of IPMC actuation was developed. The comparison of theoretical and experimental 

results indicates that the model can predict IPMC actuator behavior well. Furthermore, we 

proposed a soft MSM-IPMC actuator having multiple degrees-of-freedom and high 

maneuverability that can be thermally and electrically controlled. These multiple inputs allow for 

complex motions that are routine in nature, but that would be otherwise difficult to be achieved 

with a single actuator. Prior to the development of this novel actuator, this capability only could 

be realized with existing actuator technologies by using multiple actuators or another robotic 

system. To the best of our knowledge, this MSM-IPMC actuator is the first solitary actuator 

capable of multiple-input control and the resulting deformability and maneuverability. This 

technology can be applied to medical devices and biomimetic robotics.  The underlying physics 

of the multiple shape memory effect was investigated. A physical model based on the free energy 

theory was developed to describe the shape memory behavior of MSM-IPMC. The multiple 

shape memory effect was theoretically investigated and a physics-based model that couples the 

electrical actuation effect and the multiple shape memory effect was presented. The simulation 

results show good agreement with experimental results. The multiple shape memory effect of the 

MSM-IPMC were characterized. A biomimetic underwater robot that is actuated by the MSM-

IPMC was developed. The robot was experimentally tested under a flow channel and the thrust 

force was measured. 
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Chapter 8. Future work 

The MSM-IPMC can perform high-frequency oscillation under the electrical input and 

stable multiple degrees of freedom deformation under the thermal input. These two deformations 

can be performed simultaneously and separately on a single actuator. New biomedical devices, 

microfluidics and soft robotic systems can be developed based on the MSM-IPMC actuator. As 

was mentioned above, different methods can be used to thermally control the actuator. For 

example, positive temperature coefficient heating film can be plated on the surface for the 

heating of the actuator. Figure 8.1 shows the process of screen printing. 

Additionally, the physics of the multiple shape memory effect can be further explored. 

One method to solve this problem is to physically describe the motion of the molecule segments 

during the shape memory process. When the multiple shape memory effect and electrical 

actuation effect were performed simultaneously, the motion of the molecule segments induced 

by the heat may also have interactions with the migrating cations induced by the electrical field. 

The mobility of the cations may also be affected by the increasing temperature. 

Finally, the biomimetic underwater robot developed in our study is based on the off-

board control circuit. External wires connected to the robot affect the motion of the robot. In the 

future, we aim to develop a biomimetic underwater robot that is based on the on-board control 

circuit. Actuated by the MSM-IPMC actuator, the robot is propelled by the traveling wave. With 

the multiple shape memory effect and the electrical actuation effect, the robot is capable of high 

maneuverability, such as the motion in the pitch, left-right, forward and backward directions. 
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Figure 8.1 Screen printing process of MSM-IPMC. 
 (a) Prepare the mask for the screen printing. (b) Coat the screen. (c) Attach the mask to the 
screen. (d) Expose the screen to light. (e) Remove the mask and wash away the part covered by 
the mask. (f) Spay an isolating layer on the surface of IPMC. (g) Put the screen on top of the 
IPMC and print with PCT. (h) Remove the screen from IPMC. 
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Appendix A: Derivation of charge density 

From Eq. (2.11), the expression of the local current density at an electrode boundary is  
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Combing Eqs. (2.7), (2.8) and (2.10), one can obtain [74] 
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With Eqs. (2.12), (A.1) and (A.2), the electric potential at the boundary of IPMC element can be 

rewritten as 
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Then by solving Eq. (A.3) the expression of the � �szC ,  is derived as 
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and � �szx ,,�  can be obtained as 

� � � � � �� � � �sVxsAszGszx sinh,,, ��� .                                               (A.5) 
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Appendix B: Derivation of deformation 

With the linear beam theory, the tip displacement of the IPMC beam element relating to 

the z can be denoted as 

� � � �
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The angle of the curved beam element is donated as 

� � � �
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Since dw (z, s) << dL, one can rewrite Eq. (B.2) as 
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The slope at the tip of the IPMC beam element is expressed as 
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By integrating the tip displacements of the elements, one can obtain the deformation of the IPMC 

as 
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Solving Eq. (B.5) with boundary conditions � � 0,0 �sw  and 
� � 0,0
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Appendix C: LabVIEW set up 

The LabVIEW was set up for the experimental test of the actuator. The input voltage, 

current, displacement and blocking force of the actuator can be recorded simultaneously through 

the LabVIEW. Furthermore, the thermal couple was integrated into the measurement system. 

The temperature can be measured as well. All the sensors were calibrated. Figure C.1 shows the 

LabVIEW set up. 

 

 
(a) 
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(b) 

Figure C.1 LabVIEW set up for the actuator test: (a) Block diagram; (b) Front panel. 
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The sensing characteristics of the smart material can be tested through the LabVIEW. 

The output voltage, displacement and current of the actuator can be recorded simultaneously 

through the LabVIEW. All the sensors were calibrated. Figure C.2 shows the LabVIEW set up. 

(a) 
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(b) 

Figure C.2 LabVIEW set up for the sensor test: (a) Block diagram; (b) Front panel. 
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Appendix D: Modeling of the IPMC in COSMOL 

This work was in cooperate with Tyler Stalbaum. The IPMC actuator was modeled in 2D 

utilizing COSMOL Multiphysics 4.3b software. In the Model Wizard, the first component 

includes Electric Current (ec), Transport of Diluted Species (tds) and General Form PDE (g), 

which was used to simulate the charge dynamics inside the polymer. The second component is 

Solid Mechanics (solid), which simulated the solid mechanics of the IPMC beam. The 

parameters of the model were presented in Figure D.1.  

 
Figure D.1 Parameters of the model. 
 

Then the geometry and boundary conditions of the model were defined, as shown in 

Figure D.2. Meshes were generated separated for each component. Figure D.3 shows the Model 

Builder of the model. The simulations of the components were performed individually in the 
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study, which were all time dependent. Then the results can be obtained. The displacement of the 

IPMC actuator was presented in Figure D.4. 

 

 
Figure D.2 Geometry of the model. 
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Figure D.3 The Model Builder of the model. 
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Figure D.4 Displacement of the IPMC actuator. 
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Appendix E: Robotic fish control code 

1) Travelling wave motion control: 

 

unsigned int long t0; 

double v1,v2,v3,v4,v5,v6,v7,v8,v9,v10; 

double v1m,v2m,v3m,v4m,v5m,v6m,v7m,v8m,v9m,v10m; 

double CW,CCW,V,CW1,CW2,CW3,CW4,CW5,CW6,CW7,CW8,CW9,CW10; 

double omega= 0.5*PI; 

double omega1 = 0.5*PI; 

double omega2 = 1*PI; 

double omega3 = 2*PI; 

double phatol=10; 

double phase1=0; 

double phase2=2*PI/phatol; 

double phase3=4*PI/phatol; 

double phase4=6*PI/phatol; 

double phase5=8*PI/phatol; 

double phase6=10*PI/phatol; 

 

double tt=1000; 

int pot = 0; 

double pval = omega; 
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//double phase7=12*PI/phatol; 

int buttonstate; 

//double phase8=14*PI/phatol; 

//double phase9=16*PI/phatol; 

//double phase10=18*PI/phatol; 

 

void setup() { 

pinMode(2,OUTPUT); //analog motor driver 1 

pinMode(3,OUTPUT); //analog motor driver 2 

pinMode(4,OUTPUT); //analog motor driver 3 

pinMode(5,OUTPUT); //analog motor driver 4 

pinMode(6,OUTPUT); //analog motor driver 5 

pinMode(7,OUTPUT); //analog motor driver 6 

 

pinMode(A0,INPUT); //control omega 

//pinMode(10,OUTPUT); //analog motor driver 7 

//pinMode(11,OUTPUT); //analog motor driver 8 

//pinMode(12,OUTPUT); //analog motor driver 9 

//pinMode(13,OUTPUT); //analog motor driver 10 

pinMode(33,OUTPUT); // digital cw motor driver 1 

pinMode(35,OUTPUT); // digital cw motor driver 2 
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pinMode(37,OUTPUT); // digital cw motor driver 3 

pinMode(39,OUTPUT); // digital cw motor driver 4 

pinMode(41,OUTPUT); // digital cw motor driver 5 

pinMode(43,OUTPUT); // digital cw motor driver 6 

pinMode(32,OUTPUT); // digital cwr motor driver 1 

pinMode(34,OUTPUT); // digital cwr motor driver 2 

pinMode(36,OUTPUT); // digital cwr motor driver 3 

pinMode(38,OUTPUT); // digital cwr motor driver 4 

pinMode(40,OUTPUT); // digital cwr motor driver 5 

pinMode(42,OUTPUT); // digital cwr motor driver 6 

//pinMode(36,OUTPUT); // digital cw motor driver 7 

//pinMode(38,OUTPUT); // digital cw motor driver 8 

//pinMode(40,OUTPUT); // digital cw motor driver 9 

//pinMode(42,OUTPUT); // digital cw motor driver 10 

Serial.begin(9600); 

pinMode(22,INPUT); 

} 

void loop() { 

t0=millis(); 

omega = pval; 

if(omega < 0.1*PI) omega = 0.1*PI; 

Serial.println(omega/PI); 
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buttonstate = digitalRead(22); 

 

while(millis()-t0<tt/omega*PI*2){ 

   

//while(true){ 

  //pval = map(double(analogRead(A0)),0,1023,0.1*PI,10.0*PI); 

  pval = mapOmega(); 

  if (buttonstate > 0){ 

v1=map(500*sin(omega*(millis()-t0)/tt+phase1),-500,500,-255,255); 

v2=map(500*sin(omega*(millis()-t0)/tt+phase2),-500,500,-255,255); 

v3=map(500*sin(omega*(millis()-t0)/tt+phase3),-500,500,-255,255); 

v4=map(500*sin(omega*(millis()-t0)/tt+phase4),-500,500,-255,255); 

v5=map(500*sin(omega*(millis()-t0)/tt+phase5),-500,500,-255,255); 

v6=map(500*sin(omega*(millis()-t0)/tt+phase6),-500,500,-255,255); 

//v7=map(500*sin(omega*(millis()-t0)/1000+phase7),-500,500,-255,255); 

//v8=map(500*sin(omega*(millis()-t0)/1000+phase8),-500,500,-255,255); 

//v9=map(500*sin(omega*(millis()-t0)/1000+phase9),-500,500,-255,255); 

//v10=map(500*sin(omega*(millis()-t0)/1000+phase10),-500,500,-255,255); 

v1m=detdirV(33,32,v1); 
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v2m=detdirV(35,34,v2); 

v3m=detdirV(37,36,v3); 

v4m=detdirV(39,38,v4); 

v5m=detdirV(41,40,v5); 

v6m=detdirV(43,42,v6); 

//v7m=detdirV(36,v7); 

//v8m=detdirV(38,v8); 

//v9m=detdirV(40,v9); 

//v10m=detdirV(42,v10); 

analogWrite(2,v1m); 

analogWrite (3,v2m); 

analogWrite (4,v3m); 

analogWrite (5,v4m); 

analogWrite (6,v5m); 

analogWrite (7,v6m); 

//analogWrite (10,v7m); 

//analogWrite (11,v8m); 

//analogWrite (12,v9m); 

//analogWrite (13,v10m); 

} 

else 

{v6=map(500*sin(omega*(millis()-t0)/tt+phase1),-500,500,-255,255); 
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v5=map(500*sin(omega*(millis()-t0)/tt+phase2),-500,500,-255,255); 

v4=map(500*sin(omega*(millis()-t0)/tt+phase3),-500,500,-255,255); 

v3=map(500*sin(omega*(millis()-t0)/tt+phase4),-500,500,-255,255); 

v2=map(500*sin(omega*(millis()-t0)/tt+phase5),-500,500,-255,255); 

v1=map(500*sin(omega*(millis()-t0)/tt+phase6),-500,500,-255,255); 

//v1=map(500*sin(omega*(millis()-t0)/1000+phase7),-500,500,-255,255); 

//v8=map(500*sin(omega*(millis()-t0)/1000+phase8),-500,500,-255,255); 

//v9=map(500*sin(omega*(millis()-t0)/1000+phase9),-500,500,-255,255); 

//v10=map(500*sin(omega*(millis()-t0)/1000+phase10),-500,500,-255,255); 

v1m=detdirV(33,32,v1); 

v2m=detdirV(35,34,v2); 

v3m=detdirV(37,36,v3); 

v4m=detdirV(39,38,v4); 

v5m=detdirV(41,40,v5); 

v6m=detdirV(43,42,v6); 

//v7m=detdirV(36,v7); 

//v8m=detdirV(38,v8); 

//v9m=detdirV(40,v9); 

//v10m=detdirV(42,v10); 

analogWrite(2,v1m); 

analogWrite (3,v2m); 

analogWrite (4,v3m); 



www.manaraa.com

172 
 

 

analogWrite (5,v4m); 

analogWrite (6,v5m); 

analogWrite (7,v6m); 

//analogWrite (10,v7m); 

//analogWrite (11,v8m); 

//analogWrite (12,v9m); 

//analogWrite (13,v10m);}} 

//Serial.println(v1m); 

//Serial.print("\t"); 

//Serial.println(v1); 

}}} 

 

double detdirV(int CW, int CWR, double V){ 

  double abs(V); 

  if(V<0){ 

  digitalWrite(CW,HIGH); 

  digitalWrite(CWR,HIGH); 

 // digitalWrite(CCW,LOW); 

  return 255 - abs(V); 

  } 

  else{ 

  digitalWrite(CW,LOW); 
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  digitalWrite(CWR,LOW); 

//  digitalWrite(CCW,HIGH); 

  return abs(V); 

  } 

} 

 

double mapOmega(){ 

  if(analogRead(A0) < 333) return omega1; 

  else if(analogRead(A0) < 666) return omega2; 

  else return omega3; 

} 

 

2) Twisting motion control: 

 

unsigned int long t0; 

double v1,v2,v3,v4,v5,v6,v7,v8,v9,v10; 

double v1m,v2m,v3m,v4m,v5m,v6m,v7m,v8m,v9m,v10m; 

double CW,CCW,V,CW1,CW2,CW3,CW4,CW5,CW6,CW7,CW8,CW9,CW10; 

double omega=1*PI; 

double phatol=10; 

double phase1=0; 

double phase2=2*PI/phatol; 
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double phase3=4*PI/phatol; 

double phase4=6*PI/phatol; 

double phase5=8*PI/phatol; 

double phase6=10*PI/phatol; 

//double phase7=12*PI/phatol; 

int buttonstate; 

//double phase8=14*PI/phatol; 

//double phase9=16*PI/phatol; 

//double phase10=18*PI/phatol; 

 

void setup() { 

pinMode(2,OUTPUT); //analog motor driver 1 

pinMode(3,OUTPUT); //analog motor driver 2 

pinMode(4,OUTPUT); //analog motor driver 3 

pinMode(5,OUTPUT); //analog motor driver 4 

pinMode(6,OUTPUT); //analog motor driver 5 

pinMode(7,OUTPUT); //analog motor driver 6 

//pinMode(10,OUTPUT); //analog motor driver 7 

//pinMode(11,OUTPUT); //analog motor driver 8 

//pinMode(12,OUTPUT); //analog motor driver 9 

//pinMode(13,OUTPUT); //analog motor driver 10 

pinMode(33,OUTPUT); // digital cw motor driver 1 
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pinMode(35,OUTPUT); // digital cw motor driver 2 

pinMode(37,OUTPUT); // digital cw motor driver 3 

pinMode(39,OUTPUT); // digital cw motor driver 4 

pinMode(41,OUTPUT); // digital cw motor driver 5 

pinMode(43,OUTPUT); // digital cw motor driver 6 

pinMode(32,OUTPUT); // digital cwr motor driver 1 

pinMode(34,OUTPUT); // digital cwr motor driver 2 

pinMode(36,OUTPUT); // digital cwr motor driver 3 

pinMode(38,OUTPUT); // digital cwr motor driver 4 

pinMode(40,OUTPUT); // digital cwr motor driver 5 

pinMode(42,OUTPUT); // digital cwr motor driver 6 

//pinMode(36,OUTPUT); // digital cw motor driver 7 

//pinMode(38,OUTPUT); // digital cw motor driver 8 

//pinMode(40,OUTPUT); // digital cw motor driver 9 

//pinMode(42,OUTPUT); // digital cw motor driver 10 

Serial.begin(9600); 

pinMode(22,INPUT); 

} 

void loop() { 

t0=millis(); 

 

buttonstate = digitalRead(22); 
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//while(millis()-t0<1000){ 

while(true){ 

  if (buttonstate > 0){ 

v1=map(500*sin(omega*(millis()-t0)/1000+phase1),-500,500,0,255); 

v2=map(500*sin(omega*(millis()-t0)/1000+phase2),-500,500,-51,204); 

v3=map(500*sin(omega*(millis()-t0)/1000+phase3),-500,500,-102,153); 

v4=map(500*sin(omega*(millis()-t0)/1000+phase4),-500,500,-153,102); 

v5=map(500*sin(omega*(millis()-t0)/1000+phase5),-500,500,-204,51); 

v6=map(500*sin(omega*(millis()-t0)/1000+phase6),-500,500,-255,0); 

//v7=map(500*sin(omega*(millis()-t0)/1000+phase7),-500,500,-255,0); 

//v8=map(500*sin(omega*(millis()-t0)/1000+phase8),-500,500,-255,255); 

//v9=map(500*sin(omega*(millis()-t0)/1000+phase9),-500,500,-255,255); 

//v10=map(500*sin(omega*(millis()-t0)/1000+phase10),-500,500,-255,255); 

v1m=detdirV(33,32,v1); 

v2m=detdirV(35,34,v2); 

v3m=detdirV(37,36,v3); 

v4m=detdirV(39,38,v4); 

v5m=detdirV(41,40,v5); 

v6m=detdirV(43,42,v6); 

//v7m=detdirV(36,v7); 

//v8m=detdirV(38,v8); 
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//v9m=detdirV(40,v9); 

//v10m=detdirV(42,v10); 

analogWrite(2,v1m); 

analogWrite (3,v2m); 

analogWrite (4,v3m); 

analogWrite (5,v4m); 

analogWrite (6,v5m); 

analogWrite (7,v6m); 

//analogWrite (10,v7m); 

//analogWrite (11,v8m); 

//analogWrite (12,v9m); 

//analogWrite (13,v10m); 

} 

else 

{ 

v6=map(500*sin(omega*(millis()-t0)/1000+phase1),-500,500,0,255); 

v5=map(500*sin(omega*(millis()-t0)/1000+phase2),-500,500,-51,204); 

v4=map(500*sin(omega*(millis()-t0)/1000+phase3),-500,500,-102,153); 

v3=map(500*sin(omega*(millis()-t0)/1000+phase4),-500,500,-153,102); 

v2=map(500*sin(omega*(millis()-t0)/1000+phase5),-500,500,-204,51); 

v1=map(500*sin(omega*(millis()-t0)/1000+phase6),-500,500,-255,0); 

//v1=map(500*sin(omega*(millis()-t0)/1000+phase7),-500,500,-255,0); 
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//v8=map(500*sin(omega*(millis()-t0)/1000+phase8),-500,500,-255,255); 

//v9=map(500*sin(omega*(millis()-t0)/1000+phase9),-500,500,-255,255); 

//v10=map(500*sin(omega*(millis()-t0)/1000+phase10),-500,500,-255,255); 

v1m=detdirV(33,32,v1); 

v2m=detdirV(35,34,v2); 

v3m=detdirV(37,36,v3); 

v4m=detdirV(39,38,v4); 

v5m=detdirV(41,40,v5); 

v6m=detdirV(43,42,v6); 

//v7m=detdirV(36,v7); 

//v8m=detdirV(38,v8); 

//v9m=detdirV(40,v9); 

//v10m=detdirV(42,v10); 

analogWrite(2,v1m); 

analogWrite (3,v2m); 

analogWrite (4,v3m); 

analogWrite (5,v4m); 

analogWrite (6,v5m); 

analogWrite (7,v6m); 

//analogWrite (10,v7m); 

//analogWrite (11,v8m); 

//analogWrite (12,v9m); 
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//analogWrite (13,v10m);}} 

//Serial.println(v1m); 

//Serial.print("\t"); 

//Serial.println(v1); 

}}} 

 

double detdirV(int CW, int CWR, double V){ 

  double abs(V); 

  if(V<0){ 

  digitalWrite(CW,HIGH); 

  digitalWrite(CWR,HIGH); 

 // digitalWrite(CCW,LOW); 

  return 255-abs(V); 

  } 

  else{ 

  digitalWrite(CW,LOW); 

  digitalWrite(CWR,LOW); 

//  digitalWrite(CCW,HIGH); 

  return abs(V); 

  } 

} 
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Therefore, User may not assign or transfer to any other person (whether a natural person or 
an organization of any kind) the license created by the Order Confirmation and these terms 
and conditions or any rights granted hereunder; provided, however, that User may assign 
such license in its entirety on written notice to CCC in the event of a transfer of all or 
substantially all of User’s rights in the new material which includes the Work(s) licensed 
under this Service. 
8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed 
by the parties. The Rightsholder and CCC hereby object to any terms contained in any 
writing prepared by the User or its principals, employees, agents or affiliates and purporting 
to govern or otherwise relate to the licensing transaction described in the Order 
Confirmation, which terms are in any way inconsistent with any terms set forth in the Order 
Confirmation and/or in these terms and conditions or CCC's standard operating procedures, 
whether such writing is prepared prior to, simultaneously with or subsequent to the Order 
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in 
a separate instrument. 
8.5 The licensing transaction described in the Order Confirmation document shall be 
governed by and construed under the law of the State of New York, USA, without regard to 
the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding 
arising out of, in connection with, or related to such licensing transaction shall be brought, 
at CCC's sole discretion, in any federal or state court located in the County of New York, 
State of New York, USA, or in any federal or state court whose geographical jurisdiction 
covers the location of the Rightsholder set forth in the Order Confirmation. The parties 
expressly submit to the personal jurisdiction and venue of each such federal or state court.If 
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you have any comments or questions about the Service or Copyright Clearance Center, 
please contact us at 978-750-8400 or send an e-mail to info@copyright.com. 
v 1.1 
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 
+1-978-646-2777. 
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AIP PUBLISHING LLC LICENSE 
TERMS AND CONDITIONS 

Oct 17, 2017 

 

 

 

This Agreement between University of Nevada, Las Vegas (UNLV) -- Qi Shen ("You") 

and AIP Publishing LLC ("AIP Publishing LLC") consists of your license details and the 

terms and conditions provided by AIP Publishing LLC and Copyright Clearance Center. 

License Number 4197750008720 

License date Sep 28, 2017 

Licensed Content Publisher AIP Publishing LLC 

Licensed Content Publication Journal of Applied Physics 

Licensed Content Title Electrode of ionic polymer-metal composite sensors: Modeling 
and experimental investigation 

Licensed Content Author Qi Shen, Kwang J. Kim, Tianmiao Wang 

Licensed Content Date May 21, 2014 

Licensed Content Volume 115 

Licensed Content Issue 19 

Type of Use Thesis/Dissertation 

Requestor type Author (original article) 

Format Print and electronic 

Portion Excerpt (> 800 words) 

Will you be translating? No 

Title of your thesis / 
dissertation 

Theoretical and Experimental Investigation on the Multiple Shape 
Memory Ionic Polymer-Metal Composite 

Expected completion date Dec 2017 

Estimated size (number of 
pages) 

90 

Requestor Location University of Nevada, Las Vegas (UNLV) 
4505 S. Maryland Pkwy. Las Vegas, NV 89154 
 
 
Las Vegas, NV 89121 
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United States 
Attn: University of Nevada, Las Vegas (UNLV) 

Billing Type Invoice 

Billing Address University of Nevada, Las Vegas (UNLV) 
4505 S. Maryland Pkwy. Las Vegas, NV 89154 
 
 
Las Vegas, NV 89121 
United States 
Attn: Qi Shen 

Total 0.00 USD 

Terms and Conditions 

AIP Publishing LLC -- Terms and Conditions: Permissions Uses 
 
AIP Publishing hereby grants to you the non-exclusive right and license to use and/or distribute 
the Material according to the use specified in your order, on a one-time basis, for the specified 
term, with a maximum distribution equal to the number that you have ordered. Any links or 
other content accompanying the Material are not the subject of this license. 

1. You agree to include the following copyright and permission notice with the reproduction 
of the Material:"Reprinted from [FULL CITATION], with the permission of AIP 
Publishing." For an article, the credit line and permission notice must be printed on the 
first page of the article or book chapter. For photographs, covers, or tables, the notice 
may appear with the Material, in a footnote, or in the reference list. 

2. If you have licensed reuse of a figure, photograph, cover, or table, it is your 
responsibility to ensure that the material is original to AIP Publishing and does not 
contain the copyright of another entity, and that the copyright notice of the figure, 
photograph, cover, or table does not indicate that it was reprinted by AIP Publishing, 
with permission, from another source. Under no circumstances does AIP Publishing 
purport or intend to grant permission to reuse material to which it does not hold 
appropriate rights. 
You may not alter or modify the Material in any manner. You may translate the Material 
into another language only if you have licensed translation rights. You may not use the 
Material for promotional purposes. 

3. The foregoing license shall not take effect unless and until AIP Publishing or its agent, 
Copyright Clearance Center, receives the Payment in accordance with Copyright 
Clearance Center Billing and Payment Terms and Conditions, which are incorporated 
herein by reference. 

4. AIP Publishing or Copyright Clearance Center may, within two business days of granting 
this license, revoke the license for any reason whatsoever, with a full refund payable to 
you. Should you violate the terms of this license at any time, AIP Publishing, or 
Copyright Clearance Center may revoke the license with no refund to you. Notice of such 
revocation will be made using the contact information provided by you. Failure to 
receive such notice will not nullify the revocation. 

5. AIP Publishing makes no representations or warranties with respect to the Material. You 
agree to indemnify and hold harmless AIP Publishing, and their officers, directors, 
employees or agents from and against any and all claims arising out of your use of the 
Material other than as specifically authorized herein. 

6. The permission granted herein is personal to you and is not transferable or assignable 
without the prior written permission of AIP Publishing. This license may not be amended 
except in a writing signed by the party to be charged. 
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7. If purchase orders, acknowledgments or check endorsements are issued on any forms 
containing terms and conditions which are inconsistent with these provisions, such 
inconsistent terms and conditions shall be of no force and effect. This document, 
including the CCC Billing and Payment Terms and Conditions, shall be the entire 
agreement between the parties relating to the subject matter hereof. 

This Agreement shall be governed by and construed in accordance with the laws of the 

State of New York. Both parties hereby submit to the jurisdiction of the courts of New 

York County for purposes of resolving any disputes that may arise hereunder. 

 

V1.1 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 
+1-978-646-2777. 
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AIP PUBLISHING LLC LICENSE 
TERMS AND CONDITIONS 

Oct 17, 2017 

 

 

 

This Agreement between University of Nevada, Las Vegas (UNLV) -- Qi Shen ("You") 

and AIP Publishing LLC ("AIP Publishing LLC") consists of your license details and the 

terms and conditions provided by AIP Publishing LLC and Copyright Clearance Center. 

License Number 4197190262556 

License date Sep 27, 2017 

Licensed Content Publisher AIP Publishing LLC 

Licensed Content Publication Journal of Applied Physics 

Licensed Content Title A comprehensive physics-based model encompassing variable 
surface resistance and underlying physics of ionic polymer-
metal composite actuators 

Licensed Content Author Qi Shen, Viljar Palmre, Tyler Stalbaum, et al 

Licensed Content Date Sep 28, 2015 

Licensed Content Volume 118 

Licensed Content Issue 12 

Type of Use Thesis/Dissertation 

Requestor type Author (original article) 

Format Print and electronic 

Portion Excerpt (> 800 words) 

Will you be translating? No 

Title of your thesis / 
dissertation 

Theoretical and Experimental Investigation on the Multiple Shape 
Memory Ionic Polymer-Metal Composite 

Expected completion date Dec 2017 

Estimated size (number of 
pages) 

90 

Requestor Location University of Nevada, Las Vegas (UNLV) 
4505 S. Maryland Pkwy. Las Vegas, NV 89154 
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Las Vegas, NV 89121 
United States 
Attn: University of Nevada, Las Vegas (UNLV) 

Billing Type Invoice 

Billing Address University of Nevada, Las Vegas (UNLV) 
4505 S. Maryland Pkwy. Las Vegas, NV 89154 
 
 
Las Vegas, NV 89121 
United States 
Attn: Qi Shen 

Total 0.00 USD 

Terms and Conditions 

AIP Publishing LLC -- Terms and Conditions: Permissions Uses 
 
AIP Publishing hereby grants to you the non-exclusive right and license to use and/or distribute 
the Material according to the use specified in your order, on a one-time basis, for the specified 
term, with a maximum distribution equal to the number that you have ordered. Any links or 
other content accompanying the Material are not the subject of this license. 

1. You agree to include the following copyright and permission notice with the reproduction 
of the Material:"Reprinted from [FULL CITATION], with the permission of AIP 
Publishing." For an article, the credit line and permission notice must be printed on the 
first page of the article or book chapter. For photographs, covers, or tables, the notice 
may appear with the Material, in a footnote, or in the reference list. 

2. If you have licensed reuse of a figure, photograph, cover, or table, it is your 
responsibility to ensure that the material is original to AIP Publishing and does not 
contain the copyright of another entity, and that the copyright notice of the figure, 
photograph, cover, or table does not indicate that it was reprinted by AIP Publishing, 
with permission, from another source. Under no circumstances does AIP Publishing 
purport or intend to grant permission to reuse material to which it does not hold 
appropriate rights. 
You may not alter or modify the Material in any manner. You may translate the Material 
into another language only if you have licensed translation rights. You may not use the 
Material for promotional purposes. 

3. The foregoing license shall not take effect unless and until AIP Publishing or its agent, 
Copyright Clearance Center, receives the Payment in accordance with Copyright 
Clearance Center Billing and Payment Terms and Conditions, which are incorporated 
herein by reference. 

4. AIP Publishing or Copyright Clearance Center may, within two business days of granting 
this license, revoke the license for any reason whatsoever, with a full refund payable to 
you. Should you violate the terms of this license at any time, AIP Publishing, or 
Copyright Clearance Center may revoke the license with no refund to you. Notice of such 
revocation will be made using the contact information provided by you. Failure to 
receive such notice will not nullify the revocation. 

5. AIP Publishing makes no representations or warranties with respect to the Material. You 
agree to indemnify and hold harmless AIP Publishing, and their officers, directors, 
employees or agents from and against any and all claims arising out of your use of the 
Material other than as specifically authorized herein. 

6. The permission granted herein is personal to you and is not transferable or assignable 
without the prior written permission of AIP Publishing. This license may not be amended 
except in a writing signed by the party to be charged. 
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7. If purchase orders, acknowledgments or check endorsements are issued on any forms 
containing terms and conditions which are inconsistent with these provisions, such 
inconsistent terms and conditions shall be of no force and effect. This document, 
including the CCC Billing and Payment Terms and Conditions, shall be the entire 
agreement between the parties relating to the subject matter hereof. 

This Agreement shall be governed by and construed in accordance with the laws of the 

State of New York. Both parties hereby submit to the jurisdiction of the courts of New 

York County for purposes of resolving any disputes that may arise hereunder. 

 

V1.1 

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 
+1-978-646-2777. 

  



www.manaraa.com

194 
 

 

SPRINGER LICENSE 
TERMS AND CONDITIONS 

Oct 17, 2017 

 

 

 

This Agreement between University of Nevada, Las Vegas (UNLV) -- Qi Shen ("You") and 

Springer ("Springer") consists of your license details and the terms and conditions provided 

by Springer and Copyright Clearance Center. 

License Number 4197311277659 

License date Sep 27, 2017 

Licensed Content Publisher Springer 

Licensed Content Publication International Journal of Intelligent Robotics and Applications 

Licensed Content Title Bioinspired travelling wave generation in soft-robotics using 
ionic polymer-metal composites 

Licensed Content Author Tyler Stalbaum, Taeseon Hwang, Sarah Trabia et al 

Licensed Content Date Jan 1, 2017 

Licensed Content Volume 1 

Licensed Content Issue 2 

Type of Use Thesis/Dissertation 

Portion Full text 

Number of copies 1 

Author of this Springer article Yes and you are a contributor of the new work 

Order reference number 
 

Title of your thesis / dissertation Theoretical and Experimental Investigation on the Multiple 
Shape Memory Ionic Polymer-Metal Composite 

Expected completion date Dec 2017 

Estimated size(pages) 90 

Requestor Location University of Nevada, Las Vegas (UNLV) 
4505 S. Maryland Pkwy. Las Vegas, NV 89154 
 
 
Las Vegas, NV 89121 
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United States 
Attn: University of Nevada, Las Vegas (UNLV) 

Billing Type Invoice 

Billing Address University of Nevada, Las Vegas (UNLV) 
4505 S. Maryland Pkwy. Las Vegas, NV 89154 
 
 
Las Vegas, NV 89121 
United States 
Attn: Qi Shen 

Total 0.00 USD 

Terms and Conditions 

 
Introduction 
The publisher for this copyrighted material is Springer. By clicking "accept" in connection 
with completing this licensing transaction, you agree that the following terms and 
conditions apply to this transaction (along with the Billing and Payment terms and 
conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you 
opened your Rightslink account and that are available at any time 
at http://myaccount.copyright.com). 
Limited License 
With reference to your request to reuse material on which Springer controls the copyright, 
permission is granted for the use indicated in your enquiry under the following conditions: 
- Licenses are for one-time use only with a maximum distribution equal to the number 
stated in your request. 
- Springer material represents original material which does not carry references to other 
sources. If the material in question appears with a credit to another source, this permission 
is not valid and authorization has to be obtained from the original copyright holder. 
- This permission 
• is non-exclusive 
• is only valid if no personal rights, trademarks, or competitive products are infringed. 
• explicitly excludes the right for derivatives. 
- Springer does not supply original artwork or content. 
- According to the format which you have selected, the following conditions apply 
accordingly: 
• Print and Electronic: This License include use in electronic form provided it is password 
protected, on intranet, or CD-Rom/DVD or E-book/E-journal. It may not be republished in 
electronic open access. 
• Print: This License excludes use in electronic form. 
• Electronic: This License only pertains to use in electronic form provided it is password 
protected, on intranet, or CD-Rom/DVD or E-book/E-journal. It may not be republished in 
electronic open access. 
For any electronic use not mentioned, please contact Springer at permissions.springer@spi-
global.com. 
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- Although Springer controls the copyright to the material and is entitled to negotiate on 
rights, this license is only valid subject to courtesy information to the author (address is 
given in the article/chapter). 
- If you are an STM Signatory or your work will be published by an STM Signatory and 
you are requesting to reuse figures/tables/illustrations or single text extracts, permission is 
granted according to STM Permissions Guidelines: http://www.stm-assoc.org/permissions-
guidelines/ 
For any electronic use not mentioned in the Guidelines, please contact Springer 
at permissions.springer@spi-global.com. If you request to reuse more content than 
stipulated in the STM Permissions Guidelines, you will be charged a permission fee for the 
excess content. 
Permission is valid upon payment of the fee as indicated in the licensing process. If 
permission is granted free of charge on this occasion, that does not prejudice any rights we 
might have to charge for reproduction of our copyrighted material in the future. 
-If your request is for reuse in a Thesis, permission is granted free of charge under the 
following conditions: 
This license is valid for one-time use only for the purpose of defending your thesis and with 
a maximum of 100 extra copies in paper. If the thesis is going to be published, permission 
needs to be reobtained. 
- includes use in an electronic form, provided it is an author-created version of the thesis on 
his/her own website and his/her university’s repository, including UMI (according to the 
definition on the Sherpa website: http://www.sherpa.ac.uk/romeo/); 
- is subject to courtesy information to the co-author or corresponding author. 
Geographic Rights: Scope 
Licenses may be exercised anywhere in the world. 
Altering/Modifying Material: Not Permitted 
Figures, tables, and illustrations may be altered minimally to serve your work. You may not 
alter or modify text in any manner. Abbreviations, additions, deletions and/or any other 
alterations shall be made only with prior written authorization of the author(s). 
Reservation of Rights 
Springer reserves all rights not specifically granted in the combination of (i) the license 
details provided by you and accepted in the course of this licensing transaction and (ii) 
these terms and conditions and (iii) CCC's Billing and Payment terms and conditions. 
License Contingent on Payment 
While you may exercise the rights licensed immediately upon issuance of the license at the 
end of the licensing process for the transaction, provided that you have disclosed complete 
and accurate details of your proposed use, no license is finally effective unless and until full 
payment is received from you (either by Springer or by CCC) as provided in CCC's Billing 
and Payment terms and conditions. If full payment is not received by the date due, then any 
license preliminarily granted shall be deemed automatically revoked and shall be void as if 
never granted. Further, in the event that you breach any of these terms and conditions or 
any of CCC's Billing and Payment terms and conditions, the license is automatically 
revoked and shall be void as if never granted. Use of materials as described in a revoked 
license, as well as any use of the materials beyond the scope of an unrevoked license, may 
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constitute copyright infringement and Springer reserves the right to take any and all action 
to protect its copyright in the materials. 
Copyright Notice: Disclaimer 
You must include the following copyright and permission notice in connection with any 
reproduction of the licensed material: 
"Springer book/journal title, chapter/article title, volume, year of publication, page, name(s) 
of author(s), (original copyright notice as given in the publication in which the material was 
originally published) "With permission of Springer" 
In case of use of a graph or illustration, the caption of the graph or illustration must be 
included, as it is indicated in the original publication. 
Warranties: None 
Springer makes no representations or warranties with respect to the licensed material and 
adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in 
its Billing and Payment terms and conditions for this licensing transaction. 
Indemnity 
You hereby indemnify and agree to hold harmless Springer and CCC, and their respective 
officers, directors, employees and agents, from and against any and all claims arising out of 
your use of the licensed material other than as specifically authorized pursuant to this 
license. 
No Transfer of License 
This license is personal to you and may not be sublicensed, assigned, or transferred by you 
without Springer's written permission. 
No Amendment Except in Writing 
This license may not be amended except in a writing signed by both parties (or, in the case 
of Springer, by CCC on Springer's behalf). 
Objection to Contrary Terms 
Springer hereby objects to any terms contained in any purchase order, acknowledgment, 
check endorsement or other writing prepared by you, which terms are inconsistent with 
these terms and conditions or CCC's Billing and Payment terms and conditions. These 
terms and conditions, together with CCC's Billing and Payment terms and conditions 
(which are incorporated herein), comprise the entire agreement between you and Springer 
(and CCC) concerning this licensing transaction. In the event of any conflict between your 
obligations established by these terms and conditions and those established by CCC's 
Billing and Payment terms and conditions, these terms and conditions shall control. 
Jurisdiction 
All disputes that may arise in connection with this present License, or the breach thereof, 
shall be settled exclusively by arbitration, to be held in the Federal Republic of Germany, in 
accordance with German law. 
Other conditions: 
V 12AUG2015 
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 
+1-978-646-2777. 
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ROYAL SOCIETY OF CHEMISTRY LICENSE 
TERMS AND CONDITIONS 

Oct 31, 2017 

 
 

 
This Agreement between University of Nevada, Las Vegas (UNLV) -- Qi Shen ("You") 
and Royal Society of Chemistry ("Royal Society of Chemistry") consists of your license 
details and the terms and conditions provided by Royal Society of Chemistry and 
Copyright Clearance Center. 

License Number 4219471043326 

License date Oct 31, 2017 

Licensed Content Publisher Royal Society of Chemistry 

Licensed Content Publication Soft Matter 

Licensed Content Title Dielectric elastomers as next-generation polymeric 
actuators 

Licensed Content Author Ravi Shankar,Tushar K. Ghosh,Richard J. Spontak 

Licensed Content Date Jul 18, 2007 

Licensed Content Volume 3 

Licensed Content Issue 9 

Type of Use Thesis/Dissertation 

Requestor type academic/educational 

Portion figures/tables/images 

Number of figures/tables/images 1 

Format print and electronic 

Distribution quantity 100 

Will you be translating? no 

Order reference number 
 

Title of the thesis/dissertation Theoretical and Experimental Investigation on the Multiple 
Shape Memory Ionic Polymer-Metal Composite 

Expected completion date Dec 2017 

Estimated size 90 

Requestor Location University of Nevada, Las Vegas (UNLV) 
4505 S. Maryland Pkwy. Las Vegas, NV 89154 
 
 
Las Vegas, NV 89121 
United States 
Attn: University of Nevada, Las Vegas (UNLV) 
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Billing Type Invoice  

Billing Address University of Nevada, Las Vegas (UNLV) 
4505 S. Maryland Pkwy. Las Vegas, NV 89154 
 
 
Las Vegas, NV 89121 
United States 
Attn: Qi Shen 

 

Total 0.00 USD  

Terms and Conditions  

This License Agreement is between {Requestor Name} (“You”) and The Royal Society of 
Chemistry (“RSC”) provided by the Copyright Clearance Center (“CCC”). The license consists of 
your order details, the terms and conditions provided by the Royal Society of Chemistry, and 
the payment terms and conditions. 
RSC / TERMS AND CONDITIONS 
INTRODUCTION 
The publisher for this copyrighted material is The Royal Society of Chemistry. By clicking 
“accept” in connection with completing this licensing transaction, you agree that the 
following terms and conditions apply to this transaction (along with the Billing and 
Payment terms and conditions established by CCC, at the time that you opened your 
RightsLink account and that are available at any time at . 
LICENSE GRANTED 
The RSC hereby grants you a non-exclusive license to use the aforementioned material 
anywhere in the world subject to the terms and conditions indicated herein. Reproduction 
of the material is confined to the purpose and/or media for which permission is hereby 
given. 
RESERVATION OF RIGHTS  
The RSC reserves all rights not specifically granted in the combination of (i) the license 
details provided by your and accepted in the course of this licensing transaction; (ii) these 
terms and conditions; and (iii) CCC’s Billing and Payment terms and conditions. 
REVOCATION 
The RSC reserves the right to revoke this license for any reason, including, but not limited 
to, advertising and promotional uses of RSC content, third party usage, and incorrect 
source figure attribution. 
THIRD-PARTY MATERIAL DISCLAIMER 
If part of the material to be used (for example, a figure) has appeared in the RSC 
publication with credit to another source, permission must also be sought from that source. 
If the other source is another RSC publication these details should be included in your 
RightsLink request. If the other source is a third party, permission must be obtained from 
the third party. The RSC disclaims any responsibility for the reproduction you make of 
items owned by a third party. 
PAYMENT OF FEE 
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ELSEVIER LICENSE 
TERMS AND CONDITIONS 

Oct 31, 2017 

 

 

 

This Agreement between University of Nevada, Las Vegas (UNLV) -- Qi Shen ("You") 

and Elsevier ("Elsevier") consists of your license details and the terms and conditions 

provided by Elsevier and Copyright Clearance Center. 

License Number 4219471354238 

License date Oct 31, 2017 

Licensed Content Publisher Elsevier 

Licensed Content Publication Polymer 

Licensed Content Title Recent advances in polymer shape memory 

Licensed Content Author Tao Xie 

Licensed Content Date Oct 13, 2011 

Licensed Content Volume 52 

Licensed Content Issue 22 

Licensed Content Pages 16 

Start Page 4985 

End Page 5000 

Type of Use reuse in a thesis/dissertation 

Intended publisher of new work other 

Portion figures/tables/illustrations 

Number of 
figures/tables/illustrations 

1 

Format both print and electronic 

Are you the author of this Elsevier 
article? 

No 

Will you be translating? No 

Original figure numbers Figure 3 
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Title of your thesis/dissertation Theoretical and Experimental Investigation on the Multiple 
Shape Memory Ionic Polymer-Metal Composite 

Publisher of new work University of Nevada, Las Vegas (UNLV) 

Author of new work Dr. Kwang J. Kim 

Expected completion date Dec 2017 

Estimated size (number of pages) 90 

Requestor Location University of Nevada, Las Vegas (UNLV) 
4505 S. Maryland Pkwy. Las Vegas, NV 89154 
 
 
Las Vegas, NV 89121 
United States 
Attn: University of Nevada, Las Vegas (UNLV) 

Publisher Tax ID 98-0397604 

Total 0.00 USD 

Terms and Conditions 

INTRODUCTION 
1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in 
connection with completing this licensing transaction, you agree that the following terms 
and conditions apply to this transaction (along with the Billing and Payment terms and 
conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you 
opened your Rightslink account and that are available at any time 
at http://myaccount.copyright.com). 

GENERAL TERMS 
2. Elsevier hereby grants you permission to reproduce the aforementioned material subject 
to the terms and conditions indicated. 
3. Acknowledgement: If any part of the material to be used (for example, figures) has 
appeared in our publication with credit or acknowledgement to another source, permission 
must also be sought from that source.  If such permission is not obtained then that material 
may not be included in your publication/copies. Suitable acknowledgement to the source 
must be made, either as a footnote or in a reference list at the end of your publication, as 
follows: 
"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of 
chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE 
SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The 
Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with 
permission from Elsevier." 
4. Reproduction of this material is confined to the purpose and/or media for which 
permission is hereby given. 
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be 
altered/adapted minimally to serve your work. Any other abbreviations, additions, 
deletions and/or any other alterations shall be made only with prior written authorization 
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of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications 
can be made to any Lancet figures/tables and they must be reproduced in full. 
6. If the permission fee for the requested use of our material is waived in this instance, 
please be advised that your future requests for Elsevier materials may attract a fee. 
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the 
combination of (i) the license details provided by you and accepted in the course of this 
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment 
terms and conditions. 
8. License Contingent Upon Payment: While you may exercise the rights licensed 
immediately upon issuance of the license at the end of the licensing process for the 
transaction, provided that you have disclosed complete and accurate details of your 
proposed use, no license is finally effective unless and until full payment is received from 
you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and 
conditions.  If full payment is not received on a timely basis, then any license 
preliminarily granted shall be deemed automatically revoked and shall be void as if never 
granted.  Further, in the event that you breach any of these terms and conditions or any of 
CCC's Billing and Payment terms and conditions, the license is automatically revoked and 
shall be void as if never granted.  Use of materials as described in a revoked license, as 
well as any use of the materials beyond the scope of an unrevoked license, may constitute 
copyright infringement and publisher reserves the right to take any and all action to 
protect its copyright in the materials. 
9. Warranties: Publisher makes no representations or warranties with respect to the 
licensed material. 
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and 
their respective officers, directors, employees and agents, from and against any and all 
claims arising out of your use of the licensed material other than as specifically authorized 
pursuant to this license. 
11. No Transfer of License: This license is personal to you and may not be sublicensed, 
assigned, or transferred by you to any other person without publisher's written permission. 
12. No Amendment Except in Writing: This license may not be amended except in a 
writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf). 
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any 
purchase order, acknowledgment, check endorsement or other writing prepared by you, 
which terms are inconsistent with these terms and conditions or CCC's Billing and 
Payment terms and conditions.  These terms and conditions, together with CCC's Billing 
and Payment terms and conditions (which are incorporated herein), comprise the entire 
agreement between you and publisher (and CCC) concerning this licensing transaction.  In 
the event of any conflict between your obligations established by these terms and 
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  Mechanical Engineering 
Thesis: Modeling and Analysis of the Locust Robot and the Design of Its 
Leg 

 

C. Experience 
10/2013-10/2014 Visiting Scholar, University of Nevada, Las Vegas, U.S. 
12/2012-02/2013 Visiting Scholar, University of Nevada, Las Vegas, U.S.  
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D. Research 
(a) Teaching and Research Assistant 
Department of Mechanical Engineering, University of Nevada, Las Vegas 10/2013-present 

. Doctoral research under supervision of Prof. Kwang J. Kim at the Active Materials and 
Smart Living (AMSL) Laboratory, UNLV 

. Designed and implemented experimental platform to test the electroactive materials 

. Worked on characterization (using instruments such as DMA, DSC et.al), synthesis, 
processing, and fabrication (including 3D printing) of new smart materials 

. Developed soft actuators/sensors, soft robotic systems (mechanical and electronic system) 
based on the electroactive materials 

. Physically modeled the electroactive materials and performed simulation 

. Performed finite element analysis of electroactive materials 

. Wrote research proposals of soft robotic systems 
 

(b) Research Assistant 
Department of Mechanical Engineering and Automation, Beihang University  07/2007-10/2013 

. Undergraduate and Doctoral research under supervision of Prof. Tianmiao Wang at the 
Intelligent Technology and Robotics (ITR) Laboratory, Beihang University 

. Developed several robotic systems (mechanical and electronic system) including 
underwater robot, submersible unmanned aerial vehicle, and mobile-hopping robot  

. Designed a force feedback system for the self-propulsion experimental test of biomimetic 
underwater robot  

. Worked on the development of intelligent controller for the robotic system 

. Modeled the robotic systems kinematically and dynamically  
 

E. Honors 
1) Summer Doctoral Research Fellowship (UNLV)     2017 
2) 2016-2017 Outstanding Teaching Assistant of Mechanical Engineering  

Department (UNLV)         2017 
3) Nominee of the College of Engineering for the 2017 UNLV Outstanding Graduate  

Student Teaching Award        2017 
4) UNLV Graduate Differential Fees Scholarships        2016 
5) Outstanding Graduate of Beijing Metropolitan     2016 
6) Beihang Huaheng Scholarship       2016 
7) UNLV Rebel Grad Slam 2015, Semi-Finalist (UNLV)    2015 
8) Beihang Huaheng Scholarship, First-grade Prize (Top 1 in ME Department)       2015 
9) Best Paper Award of Beihang Finalist of Graduate Student in Top 10   2015 
10) Best Paper Award of Beihang Finalist of Graduate Student in Top 10    2014 
11) Best Poster Award in Mini-Symposium on Biotechnology, Energy, and Materials (BEM),  

Utah State University (USU) – University of Nevada, Las Vegas (UNLV)      2014 
12) National Scholarship of China (Top 2 in ME Department of Beihang)    2013 
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13) National Doctoral Consortium, First-grade Prize (16/100) (Beihang)             2012 
14) Beihang Excellent Graduate Student (4/51)                                2011 
15) Beihang Excellent Graduate Student (4/51)                              2010 
16) Beihang Qixian Scholarship, First-grade Prize     2009 
17) Feng-Ru Cup Science And Technology Contest, First-grade Prize (1/193)   2009 
18) Beihang ITR Lab Excellent Student        2009 
19) Beihang Merit Scholarship        2009 
20) Beihang Merit Scholarship        2008 
21) Beihang Social Work Scholarship       2008 
22) Department Social Work Scholarship (Beihang)     2007 
23) Beihang Merit Scholarship        2007 

 

F. Publications (H-index: 8, Total Citation > 150, date: 8-30-2017) 
Google Scholar:  
https://scholar.google.com/citations?hl=en&user=te33TuUAAAAJ&view_op=list_works  
(c) Journal Paper 

1) Qi Shen, Viljar Palmre, Kwang Kim, and Il-Kwon Oh, "Theoretical and Experimental 
Investigation of Shape Memory Properties of Ionic Polymer-Metal Composite." Smart 
Materials and Structures, vol. 26, no. 4, pp. 045020, 2017. 

2) Tyler Stalbaum, Taeseon Hwang, Sarah Trabia, Qi Shen, Robert Hunt, Zakai Olsen, and 
Kwang Kim, "Bioinspired Travelling Wave Generation in Soft-Robotics using Ionic 
Polymer-Metal Composites," Intelligent Journal of Intelligent Robotics and Applications, 
vol. 1, no. 2, pp. 167-179, 2017. 

3) Qi Shen, Sarah Trabia, Tyler Stalbaum, Viljar Palmre, Kwang Kim, and Il-Kwon Oh, "A 
multiple-shape memory polymer-metal composite actuator capable of programmable 
control, creating complex 3D motion of bending, twisting, and oscillation." Scientific 
Reports, vol. 6, 2016. 

4) Kim, Kwang J., Viljar Palmre, Tyler Stalbaum, Taeseon Hwang, Qi Shen, and Sarah 
Trabia, “Promising Developments in Marine Applications With Artificial Muscles: 
Electrodeless Artificial Cilia Microfibers”, Marine Technology Society Journal, vol. 50, 
no. 5, pp. 24-34, 2016. 

5) Qi Shen, Tianmiao Wang, and Kwang J. Kim, “A biomimetic underwater vehicle actuated 
by waves with ionic polymer–metal composite soft sensors”, Bioinspiration & 
biomimetics, vol. 10, no. 5, pp. 055007, 2015. 

6) Qi Shen, Viljar Palmre, Tyler Stalbaum, Kwang J. Kim, “A comprehensive physics-based 
model encompassing variable surface resistance and underlying physics of ionic polymer-
metal composite actuators”, Journal of Applied Physics, vol. 118, no. 12, pp. 124904, 2015. 

7) Qi Shen, Miao Liu, Chenhao Han, Jianhong Liang, Tianmiao Wang, “Theoretical and 
experimental study of a novel power generating device based on IPMC”, Journal of 
Shenyang Aerospace University, vol. 32, no. 3, pp. 42-46, 2015.  

8) Qi Shen, Kwang J. Kim, Tianmiao Wang, “Electrode of ionic polymer-metal composite 
sensors: Modeling and experimental investigation”, Journal of Applied Physics, vol. 115, 
pp. 194902, 2014. 
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9) Qi Shen, Chenhao Han, Tianmiao Wang, Jianhong Liang, “Experimental Investigation of 
a Biomimetic Robotic Fish Actuated by IPMC”, Journal of Beijing University of 
Aeronautics and Astronautics, vol. 12, pp. 016, 2014.  

10) Qi Shen, Tianmiao Wang, Jianhong Liang, Li Wen, “Hydrodynamic Performance of a 
Biomimetic Robotic Swimmer Actuated by Ionic Polymer-Metal Composite”, Smart 
Materials and Structures, vol. 22, no. 7, pp. 075035, 2013. 

11) Qi Shen, Tianmiao Wang, Li Wen, Jianhong Liang, “Modeling and Fuzzy Control of an 
Efficient-Swimming Ionic Polymer-Metal Composite Actuated Robot”, International 
Journal of Advanced Robotic Systems, vol. 10, no. 5, pp. 1-10, 2013. 

12) Junmao Yin, Diansheng Chen, Qi Shen, “Design and analysis of the locust-like jumping 
mechanism”, Journal of Beijing University of Aeronautics and Astronautics, vol. 39, no. 
10, pp. 1348-1353, 2013.  

13) Tianmiao Wang, Qi Shen, Li Wen, Jianhong Liang, “On the thrust performance of an ionic 
polymer-metal composite actuated robotic fish: modeling and experimental investigation”, 
Science China Technological Sciences, vol. 55, no. 12, pp. 3359–3369, 2012. (Tianmiao 
Wang and Qi Shen contributed equally to the work. Qi Shen is the corresponding author.) 

14) Li Wen, Jianhong Liang, Qi Shen, Lei Bao, and Qian Zhang, “Hydrodynamic Performance 
of an Undulatory Robot: Functional Roles of the Body and Caudal Fin Locomotion”, 
International Journal of Advanced Robotic Systems, vol. 9, pp. 1-10, 2012. 

15) Diansheng Chen, Wanjun Zheng, Yu Huang, Qi Shen, Tianmiao Wang, “The design and 
optimization of a hopping robot’ tipping mechanism”, Chinese Journal of Mechanical 
Engineering, vol. 1, pp. 004, 2011.  
 

(d) Conference and Proceedings Paper 
1)  Qi Shen, Tyler Stalbaum, Sarah Trabia, Taeseon Hwang, Robert Hunt, and Kwang Kim, 

"Modeling of a Soft Multiple-Shape-Memory Ionic Polymer-Metal Composite Actuator,” 
In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health 
Monitoring, pp. 101650C-101650C, 2017. 

2) Tyler Stalbaum, Qi Shen, and Kwang J. Kim. "A model framework for actuation and 
sensing of ionic polymer-metal composites: prospective on frequency and shear response 
through simulation tools." In Electroactive Polymer Actuators and Devices (EAPAD), vol. 
10163, p. 101630L, 2017. 

3) Qi Shen, Viljar Palmre, Jameson Lee, and Kwang J. Kim, “A physics model of the multi-
degree freedom ionic polymer-metal composite cylinder actuator”, (Conference paper and 
poster) In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health 
Monitoring, pp.98001B-98001B, 2016. 

4) Sarah Trabia, Qi Shen, Tyler Stalbaum, Robert Hunt, Taeseon Hwang, and Kwang Kim, 
"Numerical and experimental investigation of a biomimetic robotic jellyfish actuated by 
Ionic Polymer-Metal Composite", In 2016 13th International Conference on In Ubiquitous 
Robots and Ambient Intelligence (URAI), pp. 204-205, 2016. 

5) Tyler Stalbaum, Sarah Trabia, Qi Shen, and Kwang J. Kim, “Fluid flow sensing and 
control with ionic polymer-metal composites”, In SPIE Smart Structures and Materials+ 
Nondestructive Evaluation and Health Monitoring, pp. 97982E-97982E, 2016. 
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6) Qi Shen, Viljar Palmre, Tyler Stalbaum, Kwang J. Kim, “Comprehensive modeling of 
ionic polymer-metal composite actuators based upon variable surface resistance and 
underlying physics of the polymer membrane”, (Conference paper and poster) Proc. 
SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD), pp. 94302J, 2015. 

7) Qi Shen, Kwang J. Kim, Tianmiao Wang, “Electrode of ionic polymer-metal composite 
sensors: modeling and experimental investigation”, (Conference paper and poster) Proc. 
SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD), pp. 90563M, 2014. 

8) Qi Shen, Tianmiao Wang, Li Wen, Jianhong Liang, Xingbang Yang, Guocai Yao, “A 
novel method for investigating the kinematic effect on the hydrodynamics of robotic fish”, 
(Conference paper and presentation) IEEE International Conference on Robotics and 
Biomimetics, pp. 1306-1311, 2013. 

9) Guocai Yao, Jianhong Liang, Tianmiao Wang, Xingbang Yang, Qi Shen, Yucheng Zhang, 
Hailiang Wu, Weicheng Tian, “Development of a turtle-like underwater vehicle using 
central pattern generator”, IEEE International Conference on Robotics and Biomimetics, 
pp. 44-49, 2013. 

10) Yang, Xingbang, Jianhong Liang, Tianmiao Wang, Guocai Yao, Wendi Zhao, and Qi 
Shen, "Submersible Unmanned Aerial Vehicle Concept Design Study." Aviation 
Technology, Integration, and Operations Conference, pp. 4422, 2013. 

11) Qi Shen, Tianmiao Wang, Li Wen, Jianhong Liang, and Yang Chen, “On the thrust 
efficiency of an IPMC actuated robotic swimmer: dynamic modeling and experimental 
investigation”, International Offshore and Polar Engineering Conference, pp. 556-562, 
2012. 

12) Li Wen, Guanhao Wu, Qi Shen, Tianmiao Wang, and Jianhong Liang, “The Use of 
Robotic Apparatus for Studying Propulsion Performance and Fluid Mechanism Of 
Undulatory Fish Locomotion”, International Offshore and Polar Engineering Conference, 
pp. 548-555, 2012. 

13) Xingbang Yang, Tianmiao Wang, Jianhong Liang, Guocai Yao, Yang Chen, Qi Shen, “N
umerical Analysis of Biomimetic Gannet Impacting with Water during Plunge-diving”, 
IEEE International Conference on Robotics and Biomimetics, pp. 569-574, 2012. 

 

(e) Book Chapter 
1) Kwang J. Kim, Tyler Stalbaum, Sarah Trabia, Taeseon Hwang, Zakai Olsen, Shelby 

Nelson, Qi Shen, Dong-Chan Lee, James Carrico, Kam K. Leang, Viljar Palmre, Jungsoo 
Nam, Ilseok Park, Rashi Tiwari, Doyeon Kim, and Sungjun Kim. Guidelines for making 
Ionic Polymer-Metal Composite (IPMC) materials as artificial muscles by advanced 
manufacturing methods: State-of-the-Art. In Advances in manufacturing and processing of 
materials and structures. Submitted for review, 2017. 

2) Li Wen, Daniel Vogot, Zhenyun Shi, Qi Shen and Ziyu Ren, Chapter "Advanced 
material for soft robotics", in book “Design, Fabrication, Properties and Applications of 
Smart and Advanced Materials”. SCIENCE PUBLISHERS, Imprint of CRC Press/ Taylor 
& Francis Group. pp. 342-375, 2015. 
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G. Patent 
1) Jianhong Liang, Sicheng Liang, Hang Xiao, Shengxi Li, Xingbang Yang, Ziyu Ren, and 

Qi Shen, “A self-adaption finger mechanism with one-way flexible knuckles”, State 
Intellectual Property Office of the People’s Republic of China (ID# CN103552086A), 
2013. 

2) Jianhong Liang, Hailiang Wu, Chenhao Han, Yicheng Zhang, Qi Shen, Xingbang Yang, 
Yao Wu, and Han Gao, “A hybrid duct and propellers robot for aerial reconnaissance”, 
State Intellectual Property Office of the People’s Republic of China (ID# CN103552686A), 
2013. 

3) Tianmiao Wang, Qi Shen, Jianhong Liang, Lei Bao, and Xiaotian Yu, “Bionic water 
surface moving device”, State Intellectual Property Office of the People’s Republic of 
China (ID# CN103144754A), 2013. 

4) Tianmiao Wang, Qi Shen, Jianhong Liang, and Zhongyu Wang, “A biomimetic robotic 
manna ray based on ionic polymer-mental composite”, State Intellectual Property Office 
of the People’s Republic of China (ID# CN102923286A), 2012. 

5) Tianmiao Wang, Qi Shen, Jianhong Liang, and Zhongyu Wang, “A micro power generator 
based on ionic polymer-mental composite”, State Intellectual Property Office of the 
People’s Republic of China (ID# CN 102931876A), 2012. 

6) Diansheng Chen, Yu Huang, Qi Shen, Wanjun Zheng, and Tianmiao Wang, “The design 
of a locust-based hopping tipping robot”, State Intellectual Property Office of the People’s 
Republic of China (ID# CN101716962B), 2010. 

 

H. Invited Talk  
1) “Ionic Polymer-Metal Composite Based Soft Robots.” University of California, Los 

Angeles, April, 2017. 
 

I. Selected Professional Activity 
1) Qi Shen, Sarah Trabia, Tyler Stalbaum, Taeseon Hwang, Robert Hunt, Zakai Olsen, 

Kwang Kim, “Development of an origami soft robot using multiple shape memory ionic 
polymer-metal composite”, 19th Annual EAP-in-Action Session and Demonstrations on 
SPIE Smart Structures/NDE 2017. 

2) Qi Shen, Sarah Trabia, Tyler Stalbaum, Choonhan Lee, Robert Hunt, and Kwang Kim, 
“Shape memory programmable and electrically controllable IPMC”, 18th Annual EAP-
in-Action Session and Demonstrations on SPIE Smart Structures/NDE 2016. 

3) Qi Shen, Tyler Stalbaum, Shelby E. Nelson, Sara Trabia, Jameson Lee, Viljar Palmre, 
and Kwang J. Kim, “Advanced IPMC actuators and sensors”, 17th Annual EAP-in-
Action Session and Demonstrations on SPIE Smart Structures/NDE 2015. 
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J. Professional Service 
(a) Active Reviewer for the following Journals  

1) Scientific Reports (2015 IF = 5.228) 
2) IEEE Transactions on Industrial Electronics (2015 IF = 6.393);  
3) IEEE Transactions on Systems, Man and Cybernetics: Systems (2016 IF = 2.350); 
4) Smart Materials and Structures (2015 IF = 2.769); 
5) Journal of Intelligent Material Systems and Structures (2015 IF = 1.975);  
6) Smart Structures and Systems (2015 IF = 1.138);  
7) Computer Modeling in Engineering and Sciences (2015 IF = 1.06); 
8) Engineering. 

(b) Editorship 
1) Guest Editor (with Drs. Qingsong He and David Vokoun), Applied Bionics and 

Biomechanics Biomimetic, special issue on Actuation and Artificial Muscle (June 2017 
issue). 

2) Guest Editor (with Drs. Junshi Zhang, Gianluca Rizzello, Jianwen Zhao and Yanjie Wang), 
International Journal of Polymer Science, special issue on Stimuli-Responsive Smart 
Polymers and Structures: Characteristics and Applications (Jul 2017 issue). 

 

K. Teaching 
(a) As Instructor  

1) Analysis Dynamic System (ME 330), Mechanical Engineering, University of Nevada, Las 
Vegas, Summer 2017 

2) Analysis Dynamic System (ME 330), Mechanical Engineering, University of Nevada, Las 
Vegas, Summer 2016 

3) Analysis Dynamic System (ME 330), Mechanical Engineering, University of Nevada, Las 
Vegas, Summer 2015 

(b) As Teaching Assistant  
1) Fluid Dynamics (ME 380L), Mechanical Engineering, University of Nevada, Las Vegas, 

Fall 2017 
2) Fluid Dynamics (ME 380L), Mechanical Engineering, University of Nevada, Las Vegas, 

Spring 2017 
3) Fluid Dynamics (ME 380L), Mechanical Engineering, University of Nevada, Las Vegas, 

Fall 2016 
4) Fluid Dynamics (ME 380L), Mechanical Engineering, University of Nevada, Las Vegas, 

Spring 2016 
5) Automatic controls (ME 421L), Mechanical Engineering, University of Nevada, Las 

Vegas, Fall 2015 
6) Analysis Dynamic System (ME 330), Mechanical Engineering, University of Nevada, Las 

Vegas, Spring 2015 
(c) As Guest Lecturer 

1) Fluid Dynamics (ME 380), Mechanical Engineering, University of Nevada, Las Vegas, 
Spring 2017 

2) Analysis Dynamic System (ME 330), Mechanical Engineering, University of Nevada, Las 



www.manaraa.com

226 
 

 

Vegas, Spring 2016 
3) Fluid Dynamics (ME 380), Mechanical Engineering, University of Nevada, Las Vegas, 

Fall 2015 
L. Proficiency 
Experiment: Contact Angle Analyzer (CAA), Differential Scanning Calorimetry (DSC), 
Dynamic Mechanical Analysis (DMA), Fourier Transform Infrared Spectroscopy (FT-IR), 
Optical Microscope, Scanning Electrochemical Microscope (SEM), Energy Dispersive X-Ray 
Analysis (EDX), Thermal Conductivity Meter, Thermogravimetric Analysis (TGA), 3D printer. 
Software: Solidworks CAD, Matlab, COMSOL Multiphysics, Labview, Altium Designer, 
Origin Graphing & Analysis, Microsoft Office Suite 
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